BROAD RANGE OF PROBING SOLUTIONS

LabMaster 9 Zi-A acquisition modules support a broad range of probes for a variety of applications. (Note: all modules don't include 1 M Ω input capability necessary for some probes - consult specifications for details).

ZS Series High Impedance Active Probes

- 1 GHz (ZS1000) and 1.5 GHz (ZS1500) bandwidths
- High Impedance (0.9 pF, 1 M Ω)
- Extensive standard and available probe tip and ground connection accessories
- ±12 Vdc offset (ZS1500)
- LeCroy ProBus system

High-Voltage Differential Probes

- 20 MHz and100 MHz bandwidth
- 1,000 V_{rms} common mode voltage
- 1,400 V_{peak} differential voltage
- EN 61010 CAT III
- 80 dB CMRR at 50/60 Hz
- LeCroy ProBus system

High-Voltage Passive Probes

- Suitable for safe, accurate high-voltage measurements
- 1.2 kV to 20 kV
- Works with any 1 $M\Omega$ input oscilloscope

AP031

- Lowest priced differential probe
- 15 MHz bandwidth
- 700 V maximum input voltage
- Works with any 1 $M\Omega$ input oscilloscope

Current Probes

- Range of probes from 30 A_{rms} (50 A_{peak})
 to 500 A_{rms} (700 A_{peak})
- 2 MHz to 100 MHz bandwidths
- Small form factor accommodates large conductors with small jaw size
- LeCroy ProBus system

WaveLink Differential Probes

- 4 and 6 GHz models
- Excellent noise performance
- ±4 V offset
- ±3 V common mode control
- Solder-In, Browser, Quick Connect, Square Pin, Positioner Tip and HiTemp Cables

ZD Series Differential Probes

- 200 MHz, 500 MHz, 1 GHz and 1.5 GHz bandwidths
- Wide range of probing accessories
- LeCroy ProBus system

Standard

Math Tools

Display up to 8 math function traces (F1-F8). The easy-to-use graphical interface simplifies setup of up to two operations on each function trace, and function traces can be chained together to perform math-on-math.

absolute value average (summed) average (continuous) correlation (two waveforms) derivative deskew (resample) difference (-) enhanced resolution (to 11 bits vertical) log (base 10) envelope product (x) exp (base e)

exp (base 10) fft (power spectrum, magnitude, phase, up to 128 Mpts) floor integral interpolate (cubic, quadratic, sinx/x) invert (negate) log (base e)

reciprocal ratio (/) rescale (with units) roof (sinx)/x sparse square square root sum (+) zoom (identity)

Measure Tools

Display any 12 parameters together with statistics, including their average, high, low, and standard deviations. Histicons provide a fast, dynamic view of parameters and wave shape characteristics. Parameter Math allows addition, subtraction, multiplication, or division of two different parameters.

amplitude area base cycles data delay Δ delay duty cycle duration falltime (90-10%, 80-20%, @ level) frequency first last

mean median minimum narrow band phase narrow band power number of points + overshoot - overshoot peak-to-peak period risetime (10-90%,

level @ x rms maximum std. deviation top width median phase time @ minimum (min.) time @ maximum (max.) Δ time @ level Δ time @ level from trigger x @ max. x@min. 20-80%, @ level)

Standard (cont'd)

Pass/Fail Testing

Simultaneously test multiple parameters against selectable parameter limits or pre-defined masks. Pass or fail conditions can initiate actions including document to local or networked files, e-mail the image of the failure, save waveforms, send a pulse out at the front panel auxiliary BNC output, or (with the GPIB option) send a GPIB SRQ.

Jitter and Timing Analysis

This package provides jitter timing and analysis using time, frequency, and statistical views for common timing parameters, and also includes other useful tools. Includes:

- "Track" graphs of all parameters, no limitation of number
- Cycle-Cycle Jitter - Period @ level - Setup - N-Cycle - Half Period - Hold - N-Cycle with - Width @ level - Skew start selection
- Time Interval - Duty Cycle @ level - Frequency @ level Error @ level - Duty Cycle Error
- Edge @ Iv parameter (counts edges)
- Histograms expanded with 19 histogram parameters and up to 2 billion events
- Trend (datalog) of up to 1 million events
- Track graphs of all parameters
- Persistence histogram, persistence trace (mean, range, sigma)

Software Options

SDA II Serial Data Analysis Software (LM9Zi-SDAII)

Total Jitter

A complete toolset is provided to measure total jitter. Eye Diagrams with millions of UI are quickly calculated from up to 512 Mpts records, and advanced tools may be used on the Eye Diagram to aid analysis. Complete TIE and Total Jitter (Tj) parameters and analysis functions are provided.

- Time Interval Error (TIE) Measurement Parameter, Histogram, Spectrum and Jitter Track
- Total Jitter (Tj) Measurement Parameter, Histogram, Spectrum
- Eye Diagram Display (sliced)
- Eye Diagram IsoBER (lines of constant Bit Error Rate)
- Eye Diagram Mask Violation Locator
- Eye Diagram Measurement Parameters
- Eye Height
 One Level
 Zero Level
 Eye Crossing
 Avg. Power
 Extinction Ratio
 Bit Error Rate
 Slice Width (setting)
- Eye Amplitude- Eye Width- Mask out
- Q-Fit Tail Representation
- Bathtub Curve
- Cumulative Density Function (CDF)
- PLL Track

Jitter Decompostion Models

Two jitter decomposition methods are provided and simultaneously calculated to provide maximum measurement confidence. Q-Scale, CDF, Bathtub Curve, and all jitter decomposition measurement parameters can be displayed using either method.

- Spectral Method
- NQ-Scale Method

Random Jitter (Rj) and Non-Data Dependent Jitter (Rj+BUj)

- Random Jitter (Rj) Measurement Parameter
- Rj+BUj Histogram
- Rj+BUj Spectrum
- Rj+BUj Track

Deterministic Jitter (Dj)

• Deterministic Jitter (Dj) Measurement Parameter

Data Dependent Jitter (DDj)

- Data Dependent Jitter (DDj) Measurement Parameter
- DDj Histogram
- DDj Plot (by Pattern or N-bit Sequence)

Clock and Clock-Data Timing Jitter Analysis Package (LM9Zi-JITKIT)

Provides convenient setup and four views of jitter (statistical, time, spectrum, and overlaid) for a variety of horizontal, amplitude, and timing parameters. Direct display of jitter measurement values. Supports multiple simultaneous views with fast selection of multiple parameter measurements for fast and easy validation.

Software Options (cont'd)

Cable De-embedding (LM9Zi-CBL-DE-EMBED)

Removes cable effects from your measurements. Simply enter the S-parameters or attenuation data of the cable(s) then all of the functionality of the SDA 8 Zi can be utilized with cable effects de-embedded.

8b/10b Decode (LM9Zi-8B10B D)

Intuitive, color-coded serial decode with powerful search capability enables captured waveforms to be searched for user-defined sequences of symbols. Multi-lane analysis decodes up to four simultaneously captured lanes.

Serial Data Mask (SDM) (LM9Zi-SDM)

Create eye diagrams using a comprehensive list of standard eye pattern masks, or create a user-defined mask. Mask violations are clearly marked on the display for easy analysis.

Electrical Telecom Pulse Mask Test (LM9Zi-ET-PMT)

Performs automated compliance mask tests on a wide range of electrical telecom standards.

Spectrum Analyzer Mode (LM9Zi-SPECTRUM)

This package provides a new capability to navigate waveforms in the frequency domain using spectrum analyzer type controls. FFT capability added to include:

- Power averaging
- Power density
- Real and imaginary components
- Frequency domain parameters
- FFT on up to 128 Mpts

Disk Drive Measurements Package (LM9Zi-DDM2)

This package provides disk drive parameter measurements and related mathematical functions for performing disk drive WaveShape Analysis.

- Disk Drive Parameters are as follows:
- amplitude assymetrylocal base -
- local baseline separation
- local maximum
- local minimum
- local number
- local peak-peak
- local time
 between events
- local time
 between peaks
- local time
 between troughs

- local time
 at minimum
- local time
 at maximum
- local time peak-trough
- local time
 over threshold
 - local time trough-peak
 - local time under threshold
 - narrow band phase
- narrow band power

- overwrite
- pulse width 50
- pulse width 50 -
- pulse width 50 +
- resolution
- track average amplitude
- track average amplitude –
- track average amplitude +
- auto-correlation s/n
- non-linear transition shift

	13 GHz LabMaster	16 GHz LabMaster	20 GHz LabMaster	30 GHz LabMaster	36 GHz LabMaster	45 GHz LabMaster
Vertical System						
Analog Bandwidth @ 50 Ω (-3 dB) (2.4/2.92 Inputs)				30 GHz	36 GHz	45 GHz
Analog Bandwidth @ 50 Ω (-3 dB) (ProLink Input)	13 GHz (≥ 10 mV/div)	16 GHz (≥ 10 mV/div)	20 GHz (≥ 10 mV/div)	20 GHz (≥ 10 mV/div)	20 GHz (≥ 10 mV/div)	20 GHz (≥ 10 mV/div)
Analog Bandwidth				"Master" Acquisition Mod		
@ 50 Ω (-3 dB) (ProBus Input) Analog Bandwidth		For		CZi-A Master Control Modu aster" Acquisition Module:		liv)
@ 1 M Ω (-3 dB) (ProBus Input)		1 01		CZi-A Master Control Modu	* *	11 V)
Rise Time (10–90%, 50 Ω)	32.5 ps	28.5 ps	22 ps	15.5 ps	13 ps	10.5 ps
(test limit, flatness mode) Rise Time (20–80%, 50 Ω) (flatness mode)	24.5 ps	21.5 ps	16.5 ps	11.5 ps	9.75 ps	8.0 ps
Input Channels	Up to	20, dependir	ng on	Up to 10 @ 30 GHz.	Up to 10 @ 36 GHz.	Up to 5 @ 45 GHz
input Gruiniois	conf (Any combi i	iguration sele nation of up to nput channels oBus input ch	cted. o 20 ProLink s,	Up to 20 @ 20 GHz (Any combination of 20 GHz ProLink inputs or 2 ProBus input channels). Max number of channels depends on configuration selected	Up to 20 @ 20 GHz. Max number of channels depends on configuration selected.	Up to 10 @ 30 GHz Up to 20 @ 20 GHz (Any combination of 20 GHz ProLink inputs or 2 ProBus input channels). Max number of channels depends on configuration selected
Bandwidth Limiters	20 MHz, 200 MHz, 1 GHz, 4 GHz, 6 GHz, 8 GHz	20 MHz, 200 MHz, 1 GHz, 4 GHz, 6 GHz, 8 GHz, 13 GHz	20 MHz, 200 MHz, 1 GHz, 4 GHz, 6 GHz, 8 GHz, 13 GHz, 16 GHz	20 MHz, 200 MHz, 1 GHz, 4 GHz, 6 GHz, 8 GHz, 13 GHz, 16 GHz For > 20 GHz Mode: 20 GHz, 25 GHz	For ≤20 GHz Mode: 20 MHz, 200 MHz, 1 GHz, 4 GHz, 6 GHz, 8 GHz, 13 GHz, 16 GHz For >20 GHz Mode: 20 GHz, 25 GHz, 30 GHz	For ≤ 20 GHz Mode: 20 MHz, 200 MHz, 1 GHz, 4 GHz, 6 GHz, 8 GHz, 13 GHz, 16 GHz For 25 and 30 GHz Mode:
Input Impedance	$50~\Omega\pm$ $50~\Omega\pm$ F $50~\Omega\pm$ 10 M $\Omega\parallel1$	ProLink Inputs 2% for \leq 100 3% for $>$ 100 3% for $>$ 100 ProBus Inputs 2% or 1 M Ω 1 pF with sup	mV/div, mV/div s: 16pF, plied Probe	$ \begin{array}{lll} \textbf{2.92mm Inputs:} \\ 50 \ \Omega \ \pm 2\% \ \text{for} \\ \leq 79 \ \text{mV/div,} \\ 50 \ \Omega \ \pm 3\% \ \text{for} \\ > 79 \ \text{mV/div} \\ \textbf{ProLink Inputs:} \\ 50 \ \Omega \ \pm 2\% \ \text{for} \\ \leq 100 \ \text{mV/div,} \\ 50 \ \Omega \ \pm 3\% \ \text{for} \\ > 100 \ \text{mV/div} \\ \textbf{ProBus Inputs:} \\ 50 \ \Omega \ \pm 2\% \ \text{or} \ 1 \ \text{M}\Omega \\ \ 16 \text{pF,} \ 10 \ \text{M}\Omega \ \ \ 11 \ \text{pF} \\ \text{with supplied Probe} \\ \end{array} $	2.92mm Inputs: $50 \ \Omega \ +/-2\% \ for \le 79 \ mV/div, \\ 50 \ \Omega \ +/-3\% \ for >79 \ mV/div, \\ ProLink Inputs: 50 \ \Omega \ +/-2\% \ for \le 100 \ mV/div, \\ 50 \ \Omega \ +/-3\% \ for >100 \ mV/div.$	ProLink Inputs: $50~\Omega~\pm2\%~for$ $\leq 100~\text{mV/div},$ $50~\Omega~\pm3\%~for$ $> 100~\text{mV/div}$ ProBus Inputs: $50~\Omega~\pm2\%~or~1~\text{M}\Omega$ \parallel 16pF, 10 M $\Omega~\parallel$ 11 pF with supplied Probe
Input Coupling	Ę F	ProLink Inputs 50 Ω: DC, GNI ProBus Inputs DC, GND; 50 s) s:	2.92 mm Inputs: 50 Ω: DC, GND ProLink Inputs: 50 Ω: DC, GND ProBus Inputs: 1 MΩ: AC, DC, GND; 50 Ω: DC, GND	2.92 mm Inputs: 50 Ω: DC, GND ProLink Inputs - 50 Ω: DC, GND	2.4/2.92 mm Inputs: 50 Ω: DC, GND ProLink Inputs: 50 Ω: DC, GND ProBus Inputs: 1 MΩ: AC, DC, GND; 50 Ω: DC, GND
Maximum Input Voltage	±2 Vmax @ ! ±!	00Ω (ProLink) $0 \le 100$ mV/div $0 \le 100$ mV/div $0 \ge 100$ mV/div $0 \ge 100$ mV/div $0 \ge 100$ m $0 \le 100$ m $0 \ge $	7, 5.5V _{rms} @): rms ;):	$\begin{array}{c} \textbf{2.92 mm Inputs:} \\ \pm 2 \ \text{Vmax} \ @ \leq 100 \text{mV/div,} \\ 5.5 \ \text{V}_{rms} \ @ > 100 \text{mV/div} \\ \hline \textbf{50} \ \Omega \ (\text{ProLink}): \\ \pm 2 \ \text{Vmax} \ @ \leq 100 \text{mV/div,} \\ 5.5 \ \text{V}_{rms} \ @ > 100 \text{mV/div,} \\ \hline \textbf{50} \ \Omega \ (\text{ProBus}): \\ \pm 5 \ \text{Vmax,} \ 3.5 \ \text{V}_{rms} \\ \hline \textbf{1} \ \text{M} \Omega \ (\text{ProBus}): \\ 250 \ \text{V} \ \text{max.} \ (\text{peak AC:} \\ < 10 \ \text{kHz} + \text{DC}) \\ \end{array}$	2.92 mm Inputs: ±2 Vmax@≤100mV/div, 5.5Vrms@>100mV/div 50 Ω (ProLink): ±2 Vmax@≤100mV/div, 5.5Vrms@>100mV/div	2.4/2.92 mm Inputs: ±2 Vmax @ ≤ 100mV/div, 5.5V _{ms} @ > 100mV/div, 50 Ω (ProLink): ±2 Vmax @ ≤ 100mV/div, 5.5V _{ms} @ > 100mV/div, 5.5V _{ms} @ > 100mV/div 50 Ω (ProBus): ±5 Vmax, 3.5 V _{rms} 1 MΩ (ProBus): 250 V max. (peak AC: < 10 kHz + DC)

Clock Accuracy

13 GHz					
Charmel-Charmel Isolation		13 GHz 16 GHz 20 GHz	30 GHz	36 GHz	45 GHz
Dic to 19 GHz: 50 dB ic 315:11 Dic to 15 GHz: 50 dB ic 315:11 Dic to 15 GHz: 46 dB ic 20011 15 to 20 GHz: 40 dB ic 10011 15 to 20 GHz: 40 dB ic 3011 15 to 20 GHz: 40 dB ic 30		LabMaster LabMaster LabMaster	LabMaster	LabMaster	LabMaster
10 to 15 GHz: 46 dB > 200.11 15 to 20 GHz: 40 dB > 100.11 (For any two ProLink input channels, same or different vidro settings, typical) 8 bits: up to 11 bits with enhanced resolution (ERES) Sensitivity Vertical Resolution 8 bits: up to 11 bits with enhanced resolution (ERES) Sond (ProLink): 2 mV-1 (Virity, fully variable (2-95 m/V)dv vivi variable (2-95 m/V)					
15 to 20 GHz. 40 dB is 100.11	Channel-Channel Isolation				·
For any two ProLink injust channels, same or different wide settings, typical		,			·
Same or different Vidiv settings, typical Same or different Vidiv settings, typical					·
Sensitivity So Ω (Pout Ink)					,
Sensitivity So Ω (ProDunk); 2 mV-1 V/div, fully variable (2-9 s mV/div variable (2-9				•	
Sensitivity	 				rypical)
2 mV-1 V/div, fully variable (2-9 s mV/div, fully variable) 2 mV-1 V/div, fully variable 2 mV-1 V/div, fully variable					
Material Component of DC Vertical Gain Accuracy (Gan Component of DC Accuracy) 2 mV = 1 V/div. 1 MΩ (ProBus): 2 mV = 1 V/div. 1 mV (ProBus): 2 mV/div. 2 mV (ProBus): 2 mV/div. 2 mV (ProBus): 2 mV/div. 2 mV (ProBus): 2 mV (ProBus): 2 mV/div. 2 mV (ProBus): 2 mV (ProBus): 2 mV/div. 2 m	Sensitivity				
So Q (ProBus): 2 m/-1 V(fift, fully variable; 1 MQ (ProBus): 2 m/-1 V(fift, fully variable; 2 m/-1 V(fitt); 1 MQ (ProBus): 2 m/-1 V(fitt); 2 m/-1					
2 mV-1 V/div, fully variable; 1 MM2 (ProBus); 2 mV-10 V/div, fully variable; 2 mV-10 V/div, fully variable; 2 mV-1 V/div, fully variable; 1 MΩ (ProBus); 2 mV-1 V/div, fully variable; 2				· ·	
2 mV-10 V/div, fully variable (2-99 mV/div via zoom) 50 Ω (ProBus): 2 mV-1 V/div, fully variable 1 MΩ (Pr					· ·
So Ω (ProBus): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 MΩ (2.92 mm): 2 mV-1 V/div, fully variable 1 M		1 MΩ (ProBus):	•	fully variable (2-9.9 mV/div	fully variable (2-9.9 mV/
2 mV-1 V/div, fully variable 1 MΩ (ProBus): 2 mV-10 V/div, full		2 mV-10 V/div, fully variable		via zoom)	· ·
Time/Division Range Time/Division Range					
1 MΩ (ProBus): 2 mV-10 V/div, fully variable 2 mV-10 V/div 2 mV-10 V/di					
2 mV-10 V/div, fully variable 2 mV-10 V/div					
DC Vertical Gain Accuracy					
Gain Component of DC Accuracy 50 Ω (ProLink): ±500 mV @ 2-190 mV/div ±4 V @ > 100 mV/div 1 ±4 V @ > 100 mV/div 1 ±500 mV @ 2-79 mV/div ±4 V @ > 100 mV/div 1 ±500 mV @ 2-79 mV/div ±4 V @ > 100 mV/div 1 ±500 mV @ 2-79 mV/div ±4 V @ > 100 mV/div 1 ±500 mV @ 2-79 mV/div ±4 V @ > 100 mV/div 1 ±500 mV @ 2-100 mV/div 1 ±4 V @ > 100 mV/div 1 ±4 V @ > 10			fully variable		fully variable
Gain Component of DC Accuracy 50 Ω (ProLink): ±500 mV @ 2-190 mV/div ±4 V @ > 100 mV/div 1 ±4 V @ > 100 mV/div 1 ±500 mV @ 2-79 mV/div ±4 V @ > 100 mV/div 1 ±500 mV @ 2-79 mV/div ±4 V @ > 100 mV/div 1 ±500 mV @ 2-79 mV/div ±4 V @ > 100 mV/div 1 ±500 mV @ 2-79 mV/div ±4 V @ > 100 mV/div 1 ±500 mV @ 2-100 mV/div 1 ±4 V @ > 100 mV/div 1 ±4 V @ > 10	DC Vertical Gain Accuracy	+1% FS (typic	call offset at 0 \/: +1 5% F	S (test limit) offset at 0 V	
So Ω (ProLink):	The state of the s	±1701.5. γεγριο	July, 011301 at 0 V, ±1.0 /0 1.	o. (tost infint), onsot at o v	
# \$500 mV @ 2-190 mV/div ±4 V @ > 100 mV/div 1 V/div 50 Ω (ProBus):	•				
#4 V @ > 100 mV/div −500 mV/div −500 mV/div −500 mV/div −500 mV/div −500 mV/div ±750 mV @ 2−100 mV/div ±750 mV @ 2−100 mV/div ±10 V @ 142 mV−1.40 V/div ±10 V @ 1.42 v−10 V/div ±100 V @ 1.42 v−10 V/div ±100 V @ 1.32 v−10 mV/div ±10 V @ 1.30 mV−1.28 V/div ±100 V @ 1.30 mV−1.28 V/di	Offset Range				
So Ω (ProBus):				· ·	· ·
±750 mV @ 2-100 mV/div ±4 V @ > 100 mV/div = 1 MΩ;					
### ### #############################					
1 MΩ: ±1V @ 2-140 mV/div ±10 V @ 142m V-1.40 V/div ±100 V @ 1.42 V-10 V/div ±100 V @ 1.42 V-10 V/div ±2750 mV @ 2-100 mV/div -1 V/div ±4 V @ > 100 mV/div -1 V/div ±10 V @ 130 mV-1.28 V/div ±10V @ 13.3V-10 V/div DC Vertical Offset Accuracy		· ·			\/ O + \/ \/ \/ \/
# 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1 MΩ:	±4 V @ > 100 mV/div-1		
#100 V @ 1.42 V-10 V/div #2F50 mV @ 2-100 mV/div #2F50 mV @ 1.30 mV-1.28 V/div #2F50 mV @ 1.30 mV mV #2F50 mV @ 1.30 mV mV mV @ 1.30 mV			V/div	V/div	
### \$\frac{\pmu}{\pmu} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $		±100 V @ 1.42 V-10 V/div			· ·
1 MΩ:					· · · · · · · · · · · · · · · · · · ·
#1V @ 2–128 mV/div #10V @ 130 mV-1.28 V/div #10V @ 130 mV-1.28 V/div #10V @ 130 mV-1.28 V/div #100 V @ 1.3V-10 V/div DC Vertical Offset Accuracy #(1.5% of offset setting + 1 mV) (test limit) Horizontal System Timebases Internal timebase with 10 GHz clock frequency common to all input channels. Single, distributed 10 GHz clock for all channels ensures precise synchronization with timing accuracy between all channels identical to that provided within a single, conventional oscilloscope package Time/Division Range For ≥ 25 GHz Mode:					
# ±100 V @ 1.3V-10 V/div DC Vertical Offset Accuracy # ±(1.5% of offset setting + 1 mV) (test limit) Horizontal System Timebases Internal timebase with 10 GHz clock frequency common to all input channels. Single, distributed 10 GHz clock for all channels ensures precise synchronization with timing accuracy between all channels identical to that provided within a single, conventional oscilloscope package Time/Division Range Real-time Mode: 20 ps/div-64 s/div; Real-time Mode: 20 ps/div-640 µs/div, depending on memory length Roll Mode: N/A Real-time Mode: 20 ps/div-64 s/div; Real-time Mode: 20 ps/div-64 s/div; Real-time Mode: 20 ps/div-10 ns/div; Roll Mode: Ris Mode: 20 ps/div-10 ns/div; Roll Mode:					
DC Vertical Offset Accuracy Horizontal System Timebases Internal timebase with 10 GHz clock frequency common to all input channels. Single, distributed 10 GHz clock for all channels ensures precise synchronization with timing accuracy between all channels identical to that provided within a single, conventional oscilloscope package Time/Division Range Real-time Mode: 20 ps/div-64 s/div; RIS Mode: 20 ps/div-10 ns/div; depending on memory length Roll Mode: N/A Real-time Mode: Real-time Mode: Real-time Mode: 20 ps/div-64 s/div; Real-time Mode: 20 ps/div-64 s/div; Roll Mode: Real-time Mode: 20 ps/div-10 ns/div; RIS Mode: 20 ps/div-10 ns/div; RIS Mode:			±10V @ 130 mV-1.28 V/div		±10V @ 130 mV-1.28 V/div
Horizontal System Timebases Internal timebase with 10 GHz clock frequency common to all input channels. Single, distributed 10 GHz clock for all channels ensures precise synchronization with timing accuracy between all channels identical to that provided within a single, conventional oscilloscope package Time/Division Range Real-time Mode: 20 ps/div-64 s/div; Real-time Mode: Roll Mode: Roll Mode: Real-time Mode: Roll Mode:			±100 V @ 1.3V-10 V/div		±100 V @ 1.3V-10 V/div
Internal timebase with 10 GHz clock frequency common to all input channels. Single, distributed 10 GHz clock for all channels ensures precise synchronization with timing accuracy between all channels identical to that provided within a single, conventional oscilloscope package Time/Division Range Real-time Mode: 20 ps/div−64 s/div; Real-time Mode: RIS Mode: 20 ps/div−640 μs/div, depending on memory length Roll Mode: N/A Real-time Mode: 20 ps/div−64 s/div; Real-time Mode: 20 ps/div−64 s/div; Real-time Mode: 20 ps/div−64 s/div; RIS Mode: 20 ps/div−10 ns/div; RIS Mode: 20 ps/div−10 ns/div; Roll Mode:	DC Vertical Offset Accuracy	±(´	1.5% of offset setting + 1	mV) (test limit)	
Internal timebase with 10 GHz clock frequency common to all input channels. Single, distributed 10 GHz clock for all channels ensures precise synchronization with timing accuracy between all channels identical to that provided within a single, conventional oscilloscope package Time/Division Range Real-time Mode: 20 ps/div−64 s/div; Real-time Mode: RIS Mode: 20 ps/div−10 ns/div; Real-time Mode: Roll Mode: N/A Real-time Mode: 20 ps/div−64 s/div; Roll Mode: RIS Mode: 20 ps/div−10 ns/div; RIS Mode: 20 ps/div−10 ns/div; Roll Mode:	Horizontal System				
Single, distributed 10 GHz clock for all channels ensures precise synchronization with timing accuracy between all channels identical to that provided within a single, conventional oscilloscope package Time/Division Range Real-time Mode: 20 ps/div-64 s/div; Real-time Mode: RIS Mode: 20 ps/div-640 µs/div, depending on memory length Roll Mode: N/A Real-time Mode: N/A Real-time Mode: 20 ps/div-64 s/div; RIS Mode: 20 ps/div-10 ns/div; RIS Mode: 20 ps/div-10 ns/div; RIS Mode: 20 ps/div-10 ns/div; Roll Mode:		Internal timebase w	rith 10 GHz clock frequenc	y common to all input chan	nels.
Time/Division Range Real-time Mode: For \geq 25 GHz Mode: 20 ps/div-64 s/div; Real-time Mode: 20 ps/div-640 µs/div, depending on memory length Roll Mode: N/A Real-time Mode: 20 ps/div-640 µs/div, depending on memory length Roll Mode: For \leq 20 GHz Mode: N/A Real-time Mode: 20 ps/div-64 s/div; RIS Mode: 20 ps/div-10 ns/div; Roll Mode:		Single, distributed 10 GHz clock	for all channels ensures p	recise synchronization with	timing accuracy
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			I to that provided within a		scope package
RIS Mode: 20 ps/div-640 μ s/div, depending on memory length Roll Mode: For \leq 20 GHz Mode: N/A Real-time Mode: 20 ps/div-64 s/div; RIS Mode: 20 ps/div-10 ns/div; Roll Mode: 20 ps/div-10 ns/div; Roll Mode:	Time/Division Range				
20 ps/div-10 ns/div; depending on memory length Roll Mode: For \leq 20 GHz Mode: N/A Real-time Mode: 20 ps/div-64 s/div; RIS Mode: 20 ps/div-10 ns/div; Roll Mode:					
Roll Mode: For \leq 20 GHz Mode: N/A Real-time Mode: 20 ps/div-64 s/div; RIS Mode: 20 ps/div-10 ns/div; Roll Mode:			d		:h
N/A Real-time Mode: 20 ps/div-64 s/div; RIS Mode: 20 ps/div-10 ns/div; Roll Mode:					
RIS Mode: 20 ps/div–10 ns/div; Roll Mode:					
20 ps/div–10 ns/div; Roll Mode:					
Roll Mode:					
N/A				Roll Mode: N/A	

	13 GHz LabMaster	16 GHz LabMaster	20 GHz LabMaster	30 GHz LabMaster	36 GHz LabMaster	45 GHz LabMaster
Horizontal System (cont'd)						
Time Interval Accuracy			< 0	0.06 / SR + (clock accuracy	* Reading) (rms)	
Jitter Noise Floor (TIE, typical)	For Acq. Length	For Acq. Length	For Acq. Length	For Acq. Length ≤ 10 µs: 140 fs _{rms}	For Acq. Length ≤10µs: 135 fs _{rms}	For Acq. Length ≤ 10 µs: 125 fs _{rms}
	≤ 10 µs: 250 fs _{rms}	≤ 10 µs: 225 fs _{rms}	≤ 10 µs: 190 fs _{rms}	For Acq. Length > 10 μ s: 190 fs _{rms}	For Acq. Length >10µs: 185 fs _{rms}	For Acq. Length > 10 μs: 175 fs _{rms}
	For Acq.	For Acq.	For Acq.			
	Length > 10 µs:	Length > 10 µs:	Length > 10 µs:			
	300 fs _{rms}	275 fs _{rms}	240 fs _{rms}			
Trigger and Interpolator Jitter			< 0.1 ps _{rms} (ty	pical, software assisted), 2	2 ps _{rms} (typical, hardware)	
Channel-Channel Deskew Range		±S	9 x time/div. se	etting or 25 ns max. (which	ever is larger), each chann	el
External Timebase Reference (Input)			10 MF	łz; 50 Ω impedance, applie	d at the rear input	
External Timebase Reference (Output)			10	MHz; 50 Ω impedance, ou	tput at the rear	
Acquisition System						
Single-Shot Sample Rate/Ch	(80 GS/s v u WM8Zi-2Xt	S/s on each ch when combining sing the option BOGS External Device)	ng channels nal Interleaving	40 GS/s on each char (80 GS/s in ≤ 20 GHz channels usir	Intel in ≥ 25 GHz Mode. Intel in ≤ 20 GHz Mode. Mode when combining one the optional of the	120 GS/s on each channe in 45 GHz Mode 80 GS/s on each channel in ≥ 25 GHz Mode 40 GS/s on each channel in ≤ 20 GHz Mode (80 GS/s in < 20 GHz Mode when combining channels using the optional WM8Zi-2X80GS External Interleaving Device)
Random Interleaved Sampling (RIS)	200 GS/s for	repetitive sign to 10 ns/div)	nals (20 ps/div	2	For ≥ 25 GHz Mode: Not Applicable For < 25 GHz Mode: 00 GS/s for repetitive sign (20 ps/div to 10 ns/div)	als
Maximum Trigger Rate			1,000,000 wav	reforms/second (in Sequen	ice Mode, up to 4 channels	s)
Intersegment Time				1 µs		
Maximum Acquisition Memory Points/Ch (4 Ch / 2 Ch)						
Standard Memory (4 Ch / 2 Ch / 1Ch)	2	0M / 20M / 20 (2000)	M		OM / 40M 000)	60M / 60M / 60M (1000)
(Number of Segments)	in half ch	and Sample R doubled annel mode w BOGS External Device.	vith use of	(In ≤ 20 GHz Modes	s, reference memory 20 GHz LabMaster)	(In < 30 GHz or < 20 GHz Modes, reference memory specification for 30 GHz and 20 GHz Lab Masters

	13 GHz 16 GHz 20 GHz	30 GHz	36 GHz	45 GHz
	LabMaster LabMaster	LabMaster	LabMaster	LabMaster
Acquisition System (cont'o	1)			
Acquisition System (cont'of Memory Options (4 Ch / 2 Ch / 1 Ch for ≤ 20 GHz Models, 2 Ch / 1 Ch for 30 and 36 GHz Models, 1 Ch for 45 GHz Model) (Number of Segments)	S-32 Option: 32M / 32M / 32M (7,500) M-64 Option: 64M / 64M / 64M (15,000) L-128 Option: 128M / 128M / 128M (15,000) VL-256 Option: 256M / 256M / 256M (15,000) Note: On all memory options, memory and sample Rate can be doubled in half channel mode with use of WM8Zi-2X80GS External Interleaving	64M (3,; M-64 128M (7,; L-128 256M (15; VL-256 512M (15; (In ≤ 20 GHz Modes	Option: / 64M 500) Option: / 128M 500) Option: / 256M ,000) 6 Option: / 512M ,000) s, reference memory 20 GHz LabMaster)	S-32 Option: 96M (3,500) M-64 Option: 192M (15,000) L-128 Option: 384M (15,000) VL-256 Option: 768M (15,000) (In < 30 GHz or < 20 GHz Modes, reference memory specification for 30 GHz and 20 GHz
Acquisition Processing	Device.			LabMasters
Averaging	Summed averaging to	1 million sweeps: continu	ous averaging to 1 million s	sweeps
Enhanced Resolution (ERES)		From 8.5 to 11-bits vertical		
Envelope (Extrema)	Envelo	ope, floor, or roof for up to	1 million sweeps	
Interpolation		Linear or Sin x/	'X	
Trianarina Cretom				
Triggering System Modes		Normal, Auto, Single, a	and Ctan	
Sources	Using 9CZi-A Master Control Module: An any input channel (Edge	ge trigger only) on 9xxSZi- y Ch 1-4 or Fast Edge of th	A Slave Acquisition Module ne first 9xxSZi-A "Slave" Ac 9xxSZi-A Slave Acquisition	es. equisition Module input,
Coupling Mode	Slope and	DC, AC, HFRej, Lf		
Pre-trigger Delay	0–100% of m	emory size (adjustable in	<u> </u>	
Post-trigger Delay			ower time/div settings or in	roll mode
Hold-off by Time or Events		ns up to 20 s or from 1 to		
Internal Trigger Range		±4.1 div from cer	nter	
Trigger Sensitivity with Edge Trigger (Ch 1–4) 2.4/2.92mm Inputs	N/A		3 div @ < 15 GHz 1.5 div @ < 3 GHz 1.0 div @ < 200 MHz DC coupling, ≥ 10 mV/div, §	50 Ω)
Trigger Sensitivity with Edge Trigger (Ch 1–4) ProBus Inputs		2 div @ < 3.5 GH 1.5 div @ < 1.75 (1.0 div @ < 200 N (for DC coupling, \geq 10 m\	GHz, 1Hz, //div, 50 Ω)	
Trigger Sensitivity with Edge Trigger (Ch 1–4) ProLink Inputs		I Module: 3 div @ < 15 GH 1.5 div @ < 3 GH	Hz (13GHz for 13 GHz LabN	laster),
External Trigger Sensitivity, (Edge Trigger)	For 9xxMZi-A "Master" Acquisition Mo		Module used with 9CZi-A I z, 1Hz, 1Hz,	
Max. Trigger Frequency, SMART Trigger	For 9xxMZi-A "Master" Acquisition M 9CZi-A Master Control Mod	dule: 2.0 GHz @ ≥ 10 mV/c	div (minimum triggerable w	idth 200 ps)
External Trigger Input Range	For 9xxMZi-A "Master" Acqu when used with a 9		of a 9xxSZi-A "Slave" Acquis Jule: Aux (±0.4 V); Aux/10 (:	

	13 GHz 16 GHz LabMaster LabMaster	20 GHz LabMaster	30 GHz LabMaster	36 GHz LabMaster	45 GHz LabMaster
Basic Triggers					
Edge	Triggers	when signal me	ets slope (positive, neg	gative, or either) and level co	ndition.
Window				ned by adjustable threshold	
TV-Composite Video	CUSTOM wit	(720p, 1080i, 10 th selectable Fiel	ds (1–8), Lines (up to 2	ctable line and field; ame rate (50 or 60 Hz) and L 000), Frame Rates (25, 30, 5 se Slope (Positive or Negati	50, or 60 Hz),
SMART Triggers™					
State or Edge Qualified	Triggers on a		only if a defined state o	r edge occurred on another able by time or events	input source.
Qualified First				only if a defined pattern, sta tween sources is selectable	
Dropout	Trigge	rs if signal drops	out for longer than sele	ected time between 1 ns an	d 20 s
Pattern	=		·	s and external trigger input). dependently. Triggers at star	_
SMART Triggers with Exclusion Technology					
Glitch				e as low as 200ps to 20 s, o	
Width (Signal or Pattern)	Triggers on positive, nega	itive, or both wid	ths with widths selecta	able as low as 200ps to 20 s	, or on intermittent faults
Interval (Signal or Pattern)			n intervals selectable b		
Timeout (State/Edge Qualified)	Triggers on	,		n edge) has occurred on and , or 1 to 99,999,999 events	ther source.
Runt				s and two time limits. Select	
Slew Rate Exclusion Triggering				. Select edge limits betwee avior and triggering when the	
Cascade (Sequence) Triggering Capability				t, then Qualify on "B" event "C" event, and Trigger on "l	
Types				t, Interval, Runt, Slew Rate,	
Holdoff				selectable by time or numb	
Reset			· · · · · · · · · · · · · · · · · · ·	ation is selectable in time or	
High-speed Serial Protocol Triggering (Option	nal)				
Data Rates	(Option LM92	_	als connected to 9xxM2 00 Mb/s-2.7 Gb/s, 3.0	Zi-A "Master" Acquisition M , 3.125 Gb/s	odule inputs)
Pattern Length			80-bits, NRZ or 8		
Clock and Data Outputs			400 mV _{p-p} (typical) A0		
Clock Recovery Jitter	,	3% Unit Interval _r	_{ms} for PRBS data patte	rns with 50% transition den	sity (typical)
High-speed Serial Protocol Triggering (Optional)					
Hardware Clock Recovery Loop BW		PLL Loop BW	= Fbaud/5500, 100 Mk	o/s to 2.488 Gb/s (typical)	
Low Speed Serial Protocol Triggering (Optional)					
Optionally available	I2C, SP	I (SPI,SSPI,SIOP), UART-RS232, CAN, L	IN, FlexRay, I2S (Audio), MI	L-1553

	13 GHz 16 GHz LabMaster LabMaster	20 GHz LabMaster	30 GHz LabMaster	36 GHz LabMaster	45 GHz LabMaster
Color Waveform Display					
Туре				r 9CZi-A Master Control Mo vith high resolution touch so	
Resolution		-	WXGA; 1280 x 768	pixels	
Number of Traces	Display a maxim	um of 40 traces	. Simultaneously displa	y channel, zoom, memory a	ind math traces
Grid Styles	Auto, Sing	le, Dual, Quad,	Octal, X-Y, Single + X-Y,	Dual + X-Y, Twelve, Sixteer	n, Twenty
Waveform Representation		Sar	nple dots joined, or san	nple dots only	
Integrated Second Displa	*				
Type	LM9Zi-VIDEO(LabMaster 9CZi-A Master (CARD-Zi-EXTDIS Control Module, cor provided to s	P-15 to relace the standard so performance descri	ISP-15 additional touch scre	laster CPU or
Resolution			WXGA; 1280 x 768	pixels	
High-Speed Digitizer Output (Option)					
Type	Option LSIB-1. Installs in La		Zi-A CPU or LabMaster lot normally used by a S		lule and uses one available
Transfer Rates			Up to 325 MB/s (ty	/pical)	
Output Protocol		PCI Expre	ss, Gen 1 (4 lanes utiliz	ed for data transfer)	
Control Protocol			TCP/IP		
Command Set		Via Windows A	utomation, or via LeCro	by Remote Command Set	
Processor/CPU					
Туре	In 9xxMZi-A CPU or 9CZi-A each CPU, and each pro			5660 2.8 GHz (or better). These and an effective process	
Processor Memory		24 GB s	tandard. Up to 192 GB	optionally available	
Operating System		Microsof	t Windows® 7 Professi	onal Edition (64-bit)	
Oscilloscope Operating Software					
Real Time Clock	Date and time displayed	with waveform	in hardcopy files. SNTP	support to synchronize to	orecision internal clocks
Setup Storage					
Front Panel and Instrument Status	Store to the	internal hard dr	ive, over a network, or	to a USB-connected periph	eral device
Interface					
Remote Control				y Remote Command Set	
Network Communication Standard		VXI-1	1 or VICP, LXI Class C (v1.2) Compliant	
GPIB Port (optional)	Supports IEEE – 488.2. Ins		ter 9xxMZi-A CPU or 90 lot normally used by a 9	CZi-A Master Control Modu 9xxSZi-A Module	le and uses one available
LSIB Port (optional)				alls in LabMaster 9xxMZi-A normally used by a 9xxSZi-A	
Ethernet Port		Supports 10/	100/1000Base-T Ethern	et interface (RJ45 port)	
USB Ports			·	upport Windows compatible otal, mounted on front pane	
External Monitor Port	In 9xxMZi-A or 9CZi-A Mast 9xxl resolution) or customer-:	er Control Mod MZi-A "Master" supplied monito	ule: Dual Link DVI comp Acquisition Module int r with up to WQXGA (2	<u> </u>	splay or internal display on xel n. 15 pin D-Type WXGA

	13 GHz 16 GHz 20 GHz LabMaster LabMaster LabMaster	30 GHz LabMaster	36 GHz LabMaster	45 GHz LabMaster
Power Requirements				
Voltage	LabMaster 9xxMZi-A "Master" Acquisition at 380–420 Hz; Al LabMaster 9xxMZi-A CPU: 100–240 VAC LabMaster 9CZi-A Master Control M	utomatic AC Voltage Sele C ±10% at 45-66 Hz; Auto	ction, Installation Category omatic AC Voltage Selectio % at 45-66 Hz; Automatic	n, Installation Category II
Max. Power Consumption	9xxMZi-A "Master" Acq. Module – 850 W / 850 VA 9xxMZi-A CPU – 400 W / 400 VA 9xxSZi-A "Slave" Acq. Module – 700 W / 700 VA 9CZi-A Master Control Module - 450 W / 450 VA. Each Module and the CPU has a separate power cord	9xxMZi-A "I 9x 9xxSZi-A " 9CZi-A M	Master" Acq. Module – 90 xMZi-A CPU – 400 W / 400 Slave" Acq. Module – 750 aster Control Module - 450 \nable e and the CPU has a separat) VA W / 750 VA N / 450 VA.
Environmental				
Temperature (Operating)		+5 °C to +40 °	1	
Temperature (Non-Operating)		−20 °C to +60 °	С	
Humidity (Operating)	5% to 80%	relative humidity (non-cor	ndensing) up to +31 °C	
	Upper limit derate	s to 50% relative humidit	y (non-condensing) at +40	°C
Humidity (Non-Operating)	5% to 95% relative h	numidity (non-condensing) as tested per MIL-PRF-28	3800F
Altitude (Operating)	Up t	o 10,000 ft. (3048 m) at o	r below +25 °C	
Altitude (Non-Operating)		Up to 40,000 ft. (12,1	192 m)	
Random Vibration (Operating)	0.5 g _{rms} 5 Hz to	500 Hz, 15 minutes in ea	ch of three orthogonal axe	S
Random Vibration (Non-Oper-	2.4 g _{rms} 5 Hz to	500 Hz, 15 minutes in ea	ch of three orthogonal axe	S
ating)				
Functional Shock	20 g _{peak} , half sine, 11 ms pulse, 3 shoo	cks (positive and negative)) in each of three orthogon	al axes, 18 shocks total
Dharia I Diagonaiana				
Physical Dimensions	2 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1007:414	0	40.48144 408.5
Dimensions (HWD)	9xxMZi-A "Master" Acquisition I			x 18.4" W x 16" D
	Ow/M7i A CDIL 5	(355 x 467 x 406 r	nm) 145 mm x 462 mm x 527 r	mml
	9xxSZi-A "Slave" Acquisition			
Weight	9xxMZi-A "Master" Acquisition Module	930MZi-A "Master" Acc 9xxMZi-A CPU 93xSZi-A "Slave" A 44 lbs. 9CZi-A Master Control	n.Module – 55 lbs. (25 kg) – 29 lbs. (13 kg) Acquisition Module – (20 kg) Module - 41 lbs. (19 kg)	945MZi-A "Master" Acq Module – 57 lbs. (26 kg) 9xxMZi-A CPU – 29 lbs. (13 kg) 945SZi-A "Slave" Acquisition Module – 46 lbs. (21 kg) 9CZi-A Master Control Module - 41 lbs. (19 kg
Shipping Weight	9xxMZi-A "Master" Acquisition Module - 70 lbs. (32 kg) 9xxMZi-A CPU - 36 lbs. (16 kg) 9xxSZi-A "Slave" Acquisition Module - 44 lbs. (20 kg) 9CZi-A Master Control Module - 41 lbs. (19 kg)	9xxMZi-A CPU 930SZi-A "Slave" A 51 lbs.	q.Module – 77 lbs. (35 kg) – 29 lbs. (13 kg) Acquisition Module – (23 kg) Module - 41 lbs. (19 kg)	945MZi-A "Master" Acq Module – 79 lbs. (36 kg) 9xxMZi-A CPU – 29 lbs. (13 kg) 945SZi-A "Slave" Acq. Module – 53 lbs. (24 kg) 9CZi-A Master Control Module - 41 lbs. (19 kg)
Certifications				
Certifications	CE Compliant, UL and cUL lis	sted; conforms to EN 6132 and CSA C22.2 No. 610		-1 2nd edition,
Certifications Warranty and Service	CE Compliant, UL and cUL lis			-1 2nd edition,

20 Mpts/Ch)

Product Description	Product Code	Product Description	Product Code
LabMaster 9 Zi-A Series Master Control Modules		LabMaster 9 Zi-A Series Slave Acquisition Modules (cont'd)	
LabMaster <i>Master</i> Control Module with15.3" WXGA Color Display.	LabMaster 9CZi-A	45 GHz, 120 GS/s, 1 Ch, 60 Mpts/Ch LabMaster <i>Slave</i> Acquisition Module with 50 Ω input (30 GHz, 80 GS/s, 2 Ch,	Labmaster 945SZi-A
LabMaster 9 Zi-A Series Master Acquisition Modules		40 Mpts/Ch; 20 GHz, 40 GS/s, 4 Ch, 20 Mpts/Ch)	
13 GHz, 40 GS/s, 4 Ch, 20 Mpts/Ch LabMaster	LabMaster 913MZi-A	Included with LabMaster 9CZi-A Standard C	onfiguration
Master Acquisition Module with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Input		DVI cable for WXGA connection, 1m long Optical 3-button Wheel Mouse, USB 2.0 Printed Getting Started Manual	
16 GHz, 40 GS/s, 4 Ch, 20 Mpts/Ch LabMaster Master Acquisition Module with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Input	LabMaster 916MZi-A	Anti-virus Software (Trial Version) Microsoft Windows 7 License Commercial NIST Traceable Calibration with Certificate 3-year Warranty	Э
20 GHz, 40 GS/s, 4 Ch,	LabMaster 920MZi-A	Included with LabMaster 9xxMZi-A Standar	d Configuration
20 Mpts/Ch LabMaster Master Acquisition Module with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Input		÷10, 500 MHz Passive Probe (Qty. 4 on 4–20 GHz uni 30–45 GHz units) ProLink to K/2.92 mm Adapter: 4 each LPA-K-A PCle x 8 cable, 2m long	
30 GHz, 80 GS/s, 2 Ch, 40 Mpts/Ch LabMaster Master Acquisition Module (20 GHz, 40 GS/s, 4 Ch, 20 Mpts/Ch) with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Input	LabMaster 930MZi-A	DVI cable for WXGA connection, 2m long Power Cable (quantity 2) for the Destination Country Optical 3-button Wheel Mouse, USB 2.0 Printed Getting Started Manual Anti-virus Software (Trial Version) Microsoft Windows 7 License Commercial NIST Traceable Calibration with Certificate	e
45 GHz, 120 GS/s, 1 Ch, 60 Mpts/Ch LabMaster <i>Master</i> Acquisition Module	LabMaster 945MZi-A	3-year Warranty Included with LabMaster 9xxSZi-A Standard	l Configuration
(30 GHz, 80 GS/s, 2 Ch, 40 Mpts/Ch; 20 GHz, 40 GS/s, 4 Ch, 20 Mpts/Ch) with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Input LabMaster 9 Zi-A Series		ProLink to K/2.92 mm Adapter: 4 each LPA-K-A PCle x 8 cable, 2m long PCle x 4 cable, 2m long Power Cable for the Destination Country ChannelSync 10 GHz clock cable, 2m long Commercial NIST Traceable Calibration with Certifica 3-year Warranty	
Slave Acquisition Modules 13 GHz, 40 GS/s, 4 Ch,	LabMaster 913SZi-A	Memory Options	
20 Mpts/Ch LabMaster Slave Acquisition	Ladividster 91332i-A	20 Mpts/Ch Standard Memory	LM9Zi-STD
Module with 50 Ω input 16 GHz, 40 GS/s, 4 Ch,	LabMaster 916SZi-A	32 Mpts/Ch Memory Option	LM9Zi-S-32
20 Mpts/Ch LabMaster Slave Acquisition	Labividster 91032i-A	64 Mpts/Ch Memory Option	LM9Zi-M-64
Module with 50 Ω input		128 Mpts/Ch Memory Option	LM9Zi-L-128
20 GHz, 40 GS/s, 4 Ch, 20 Mpts/Ch LabMaster <i>Slave</i> Acquisition Module with 50 Ω input	LabMaster 920SZi-A	256 Mpts/Ch Memory Option Sampling Rate Options	LM9Zi-VL-256
30 GHz, 80 GS/s, 2 Ch, 40 Mpts/Ch LabMaster Slave Acquisition Module with 50 Ω input (20 GHz, 40 GS/s, 4 Ch, 20 Mpts/Ch)	LabMaster 930SZi-A	80 GS/s on 2 Ch Sampling Rate Option (not available for 930xZi-A or 945xZi-A) Includes two separate external interleaving devices with	WM8Zi-2X80GS
36 GHz, 80 GS/s, 2 Ch, 40 Mpts/Ch LabMaster <i>Slave</i> Acquisition Module with 50 Ω input (20 GHz, 40 GS/s, 4ch, 20 Mpts/Ch)	LabMaster 936SZi-A	storage case	

Product Description	Product Code	Product Description	Product Code	
CPU, Computer and Other Hardware	Options	Serial Data Test Fixtures		
Additional 500 GB Hard Drive for LM9xxMZi-A	LM9Zi-500GB-RHD-02	10/100/1000Base-T Ethernet Test Fixture	TF-ENET-B**	
48 GB RAM Upgrade for LM9xxMZi-A	LM9Zi-24-UPG-48GBRAM	Telecom Adapter Kit 100 Ω Bal., 120 Ω Bal., 75 Ω Unbal.	TF-ET	
96 GB RAM Upgrade for LM9xxMZi-A	LM9Zi-24-UPG-96GBRAM	HDMI Test Fixture Set (TPA-P-SE, TPA-P-DI)	TF-HDMI	
192 GB RAM Upgrade for LM9xxMZi-A	LM9Zi-24-UPG-192GBRAM	HDMI Pull-Up Terminator Quad Pack—For Use with the Efficere	- TF-HDMI-3.3V-QUADPAK	
GPIB Option for LeCroy Oscilloscope Half-height card	GPIB-2	ET-HDMI-TPS-P Plug Test Adapter SATA 1.5 Gb/s, 3.0 Gb/s and	TF-SATA-C	
CPU Video Card to support Zi-EXTDISP-15 2nd Touch Screen Display	LM9Zi-VIDEOCARD-ZI- EXTDISP-15	6.0 Gb/s Compliance Test Fixture SATA 1.5 Gb/s, 3.0 Gb/s and 6.0 Gb/s Compliance Test Fixture Measure Kit	TF-SATA-C-KIT	
Serial Data Analysis		USB 2.0 Compliance Test Fixture	TF-USB-B	
SDA II Serial Data Analysis Option Cable De-embed Option	LM9Zi-SDAII LM9Zi-CBL-DE-EMBED	SuperSpeed Compliance USB Test Fixture	TF-USB3	
Eye Doctor II Advanced Signal	LM9Zi-EYEDRII	2 x BNC to SMA Adapter	ENET-2ADA-BNCSMA	
Integrity Tools	LIVIOZI E I EDITII	2 x 18 inch SMA to SMA Cable	ENET-2CAB-SMA018	
Carial Data Canadiana		2 x 36 inch SMA to SMA Cable	ENET-2CAB-SMA036	
Serial Data Compliance		100 ps Rise Time Filter	RISE-TIME-FILTER-100PS	
ET-PMT Software Option	LM9Zi-ET-PMT	150 ps Rise Time Filter	RISE-TIME-FILTER-150PS	
SDM Software Option QualiPHY Enabled DDR2	LM9Zi-SDM QPHY-DDR2	20 dB SMA Attenuators	20DB-SMA-ATTENUATOR	
Software Option QualiPHY Enabled Display Port Software Option	QPHY-DisplayPort	Serial Trigger and Decode MIL-STD-1553 Trigger and	LM9Zi-1553 TD	
Software Option		Decode Annotation Option		
QualiPHY Enabled Ethernet 10/100/1000BT Software Option	QPHY-ENET*	64b/66b Decode Annotation Option	LM9Zi-64b66b D	
QualiPHY Enabled HDMI Software Option	QPHY-HDMI	8b/10b Decode Annotation Option Ethernet 10G Decode Option	LM9Zi-8B10B D LM9Zi-ENET10Gbus D	
QualiPHY Enabled LPDDR2 Software Option	QPHY-LPDDR2	ARINC 429 Symbolic Decode Annotation Option	LM9Zi-ARINC429bus DSymbolic	
QualiPHY Enabled MIPI D-PHY Software Option	QPHY-MIPI-DPHY	Audiobus Trigger and Decode Annotation Option for I2S, LJ, RJ, and TDM	LM9Zi-Audiobus TD	
QualiPHY Enabled PCIe Gen1 Software Option	QPHY-PCle	Audiobus Trigger, Decode Annotation, and Graph Option for	LM9Zi-Audiobus TDG	
QualiPHY Enabled PCle 3.0 Software Option	QPHY-PCle3	I2S, LJ, RJ, and TDM CANbus TD Trigger and	LM9Zi-CANbus TD	
QualiPHY Enabled SAS-2 Software Option	QPHY-SAS2	Decode Annotation Option DiaRF 3G Decode		
QualiPHY Enabled SATA Software Option	QPHY-SATA-TSG-RSG	Annotation Option	LM9Zi-DigRF3Gbus D	
QualiPHY Enabled USB 2.0 Software Option	QPHY-USB‡	DigRF v4 Decode Annotation Option	LM9Zi-DIGRFv4bus D	
QualiPHY Enabled SuperSpeed USB Transmitter/ Receiver Compliance Software Option	QPHY-USB3-TX-RX	MIPI D-PHY Decode Annotation Option	LM9Zi-DPHYbus D	
QualiPHY Enabled WiMedia UWB Software Option z	QPHY-UWB	MIPI D-PHY Decode and Physical Layer Test Option	LM9Zi-DPHYbus DP	
* TF-ENET-B required.		I ² C, SPI and UART Trigger and Decode Annotation Option	LM9Zi-EMB	

Product Description	Product Code	Product Description	Product Code
Serial Trigger and Decode (cont'd)		Mixed Signal Solutions (cont	′d)
Fibre Channel Decode Annotation Option	LM9Zi-FCbus D	250 MHz, 1 GS/s, 36 Ch, 25 Mpts/Ch (500 MHz,	MS-500-36
FlexRay Trigger and Decode Annotation Option	LM9Zi-FlexRaybus TD	18 Ch, 2 GS/s, 50 Mpts/ Ch Interleaved) Mixed Signal Oscilloscope Option	
FlexRay Trigger, Decode Annotation, and Physical Layer Test Option	LM9Zi-FlexRaybus TDP	Data Storage Software	
100 Mb/s to 3.125 Gb/s High- speed Serial Pattern Trigger Option	LM9Zi-HSPT	Advanced Optical Recording Measurement Package	LM9Zi-AORM
for LabMaster LM9xxZi-A Master Acquisition Modules		Disk Driver Measurements Software Option	LM9Zi-DDM2
I ² C Bus Trigger and Decode Annotation Option	LM9Zi-I2Cbus TD	Disk Drive Analyzer Software Package	LM9Zi-DDA
LIN Trigger and Decode Annotation Option	LM9Zi-LINbus TD	Power Analysis Software	
MIPI M-PHY Decode Annotation Option	LM9Zi-MPHYbus D	Power Measure Analysis Software Package	LM9Zi-PMA2
MIPI M-PHY Decode Annotation	LM9Zi-MPHYbus DP	Jitter Analysis Software	
and Physical Layer Test Option MS-500-36 with I ² C, SPI and	LM9Zi-MSO-EMB	Clock Jitter Analysis Package	LM9Zi-JITKIT
UART Trigger and Decode Annotation Option		Other Software Options	L MACZ: CDECTDUM
PCI Express Decode Annotation Option	LM9Zi-PCIEbus D	Spectrum Analyzer and Advanced FFT Option	LM9Zi-SPECTRUM
PROTObus MAG Serial Debug Toolkit	LM9Zi-PROTObus MAG	EMC Pulse Parameter Software Package	LM9Zi-EMC
Decode Annotation and Protocol Analyzer Synchronization Software Option	LM9Zi-ProtoSync	Digital Filtering Software Digital Filter Software Package	LM9Zi-DFP2
Decode Annotation and	LM9Zi-ProtoSync-BT	High Speed Output Accessori	ies
Protocol Analyzer + BitTracer Synchronization Software Option		High-speed PCle Gen 1 x4 Digitizer Output	LSIB-1
SAS Decode Annotation Option	LM9Zi-SASbus D	PCI Express x1 Express	LSIB-HOSTCARD
SATA Decode Annotation Option	LM9Zi-SATAbus D LM9Zi-SPIbus TD	Card Host Interface for Laptop Express Card Slot	
SPI Bus Trigger and Decode Annotation Option		PCI Express x1 Host Interface Board for Desktop PC	LSIB-HOSTBOARD
UART and RS-232 Trigger and Decode Annotation Option	LM9Zi-UART-RS232bus TD	PCI Express x4 3-meter Cable with x4 Cable Connectors Included	LSIB-CABLE-3M
USB2-HSIC Decode Option	LM9Zi-USB2-HSICbus D	PCI Express x4 7-meter Cable	LSIB-CABLE-7M
USB 2.0 Decode Annotation Option	LM9Zi-USB2bus D	with x4 Cable Connectors Included	ESID-CADLE-71VI
USB 3.0 Decode	LM9Zi-USB3bus D	Miscellaneous	
Annotation Option		LM9Zi Pro Tower System	LM9Zi-PRO-TOWER
Mixed Signal Solutions 250 MHz, 1 GS/s, 18 Ch,	MS-250	Master Acquisition Module + CPU Rackmount Kit	LM9Zi-MASTER+CPU-RACKMOUNT
10 Mpts/Ch Mixed Signal Oscilloscope Option	W6 200	LM9Zi Slave Acquisition Module + Rackmount Kit	LM9Zi-SLAVE-RACKMOUNT
500 MHz, 2 GS/s, 18 Ch, 50 Mpts/Ch Mixed Signal	MS-500	LabMaster 9xxMZi-A or 9CZi-A Softcase	WM8Zi-SOFTCASE
Oscilloscope Option		LabMaster 9xxSZi-A or CPU Module Softcase	LM9Zi-SLAVE-CPU-SOFTCASE

Product Description	Product Code
Miscellaneous (cont'd)	
Removable Front Panel with 4 Independent Channel Controls.	Zi-FRONTPANEL-4CH
Integrated 2nd Touch Screen Display (Top-mounted, Fully Integrated 15.3" WXGA with Touch Screen Display, Including all Cabling and Software)	Zi-EXTDISP-15
Keyboard, USB	KYBD-1
Probes	
WaveLink 13 GHz, 1.6 V _{p-p} Differential Probe System	D1305-PS
WaveLink 16 GHz, 1.6 V _{p-p} Differential Probe System	D1605-PS
WaveLink 20 GHz, 1.6 V _{p-p} Differential Probe System	D2005-PS
WaveLink 25 GHz, 1.6 V _{p-p} Differential Probe System	D2505-PS
18 GHz Differential Amplifier	DA18000
13 GHz Differential Probe System	D13000PS
11 GHz Differential Probe System	D11000PS
WaveLink 6 GHz Differential Amplifier Module with Adjustable Tip	D600A-AT*
WaveLink 4 GHz, 2.5 V _{p-p} Differential Amplifier Small Tip Module	D410*
WaveLink 4 GHz, 5 V _{p-p} Differential Amplifier Small Tip Module	D420*
WaveLink 6 GHz, 2.5 V _{p-p} Differential Amplifier Small Tip Module	D610*

Product Description
Probes (cont'd)

WaveLink ProLink

2.5 GHz, 0.7 pF Active Probe (÷10),

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
WaveLink 6 GHz, 5 V _{p-p} Differential Amplifier Small Tip Module	D620*
Differential Positioner Tip with Accessories	Dx10-PT-KIT
(for use with D610 or D410)	

Product Code

WL-PLink

HFP2500

Differential Positioner Tip Dx20-PT-KIT with Accessories (for use with D620 and D420)

Platform/Cable Assembly (4 - 6 GHz)WL-PBus WaveLink ProBus Platform/Cable Assembly (4 GHz)

Small Form Factor 1.5 GHz, 0.9 pF, 1 $M\Omega$ ZS1500 High Impedance Active Probe 2.5 GHz, 0.9 pF, 1 M Ω ZS2500 High Impedance Active Probe

200 MHz, 3.5 pF, 1 M Ω ZD200 Active Differential Probe 500 MHz. 1.0 pF. ZD500 Active Differential Probe

ZD1000 1 GHz, 1.0 pF, Active Differential Probe

1.5 GHz, 1.0 pF, ZD1500 Active Differential Probe 7.5 GHz Low Capacitance PP066

 $(\div 10, 1 \text{ k}\Omega; \div 20, 500 \Omega)$

* For a complete probe, order a WL-PLink or WL-PBus Platform/Cable Assembly with the Probe Tip Module.

A variety of other active voltage and current probes are also available. Consult LeCroy for more information.

Customer Service

LeCroy oscilloscopes and probes are designed, built, and tested to ensure high reliability. In the unlikely event you experience difficulties, our digital oscilloscopes are fully warranted for three years and our probes are warranted for one year.

This warranty includes:

- No charge for return shipping
- Long-term 7-year support
- Upgrade to latest software at no charge

1-800-5-LeCroy Local sales offices are located throughout the world. www.lecroy.com Visit our website to find the most convenient location.

Passive Probe

© 2011 by LeCroy Corporation. All rights reserved. Specifications, prices, availability, and delivery subject to change without notice. Product or brand names are trademarks or requested trademarks of their respective holders.

PCI Express® is a registered trademark and/or service mark of PCI-SIG.