

Agilent N5182A MXG and N5162A MXG ATE **Vector Signal Generators**

Data Sheet **Optimized for Performance**

60

• • • =

Table of Contents

Definitions	3
requency	4
Amplitude	6
Spectral Purity	. 11
Analog Modulation	. 13
Frequency modulation	. 13
Phase modulation	. 13
Amplitude modulation	. 13
Internal analog modulation source	. 14
Pulse modulation	. 15
Narrow pulse modulation	. 14
External modulation inputs	. 15
Simultaneous modulation	. 15
/ector Modulation	. 16
Baseband Generator	. 17
EVM performance data	. 20
3GPP W-CDMA distortion performance	. 20
3GPP2 cdma2000 [®] distortion performance	. 21
GSM/EDGE output RF spectrum (ORFS)	. 22
802.16e mobile WiMAX™ distortion performance	. 22
WLAN	. 23
QPSK	. 24
General Characteristics	. 25
Ordering Information	. 28
Archive Section	. 29
Related Literature	. 31
Application literature	. 31
Product literature	. 31

Definitions

Specification (spec): Represents warranted performance of a calibrated instrument that has been stored for a minimum of 2 hours within the operating temperature range of 0 to 55 °C, unless otherwise stated, and after a 45 minute warm-up period. The specifications include measurement uncertainty. Data represented in this document are specifications unless otherwise noted.

Typical (typ): Represents characteristic performance, which 80% of the instruments manufactured will meet. This data is not warranted, does not include measurement uncertainty, and is valid only at room temperature (approximately 25 °C).

Nominal (nom): The expected mean or average performance, or an attribute whose performance is by design, such as the 50 Ω connector. This data is not warranted and is measured at room temperature (approximately 25 °C).

Measured (meas): An attribute measured during the design phase for purposes of communicating expected performance, such as amplitude drift vs. time. This data is not warranted and is measured at room temperature (approximately 25 °C).

Note: All graphs contain measured data from several units at room temperature unless otherwise noted.

Frequency

Range

 Option 503
 100 kHz to 3 GHz

 Option 506
 100 kHz to 6 GHz

Minimum frequency 100 kHz ¹

Resolution 0.01 Hz

Phase offset Adjustable in nominal 0.01 ° increments

Frequency bands ²

Band	Frequency range	Ν	
1	100 kHz to < 250 MHz	1	
2	250 to < 375 MHz	0.25	
3	375 to < 750 MHz	0.5	
4	750 to < 1500 MHz	1	
5	1500 to < 3000.001 MHz	2	
6	3000.001 to 6000 MHz	4	

Switching speed ^{3, 4, 6}

Туре	Standard	Option UNZ ⁵	Option UNZ ⁵ (typical)
Digital modulation off			
SCPI mode	\leq 5 ms (typ)	≤ 1.15 ms	≤ 950 µs
List/Step sweep mode	\leq 5 ms (typ)	≤ 900 µs	≤ 700 μs
Digital modulation on			
SCPI mode	\leq 5 ms (typ)	≤ 1.15 ms	≤ 1.05 ms
List/Step sweep mode	\leq 5 ms (typ)	≤ 900 µs	≤ 800 µs

Performance below 250 kHz is unspecified except as indicated, for units with serial numbers ending with 4742xxxx or greater. For units with lower serial numbers refer to the Archive Section at end of this document.

^{2.} N is a factor used to help define certain specifications within the document.

^{3.} Time from receipt of SCPI command or trigger signal to within 0.1 ppm of final frequency or within 100 Hz, whichever is greater, and amplitude settled to within 0.2 dB.

Additional time may be required for the amplitude to settle within 0.2 dB when switching to or from frequencies < 500 kHz.

^{5.} Specifications apply when status register updates are off.

^{6.} With Internal Channel Corrections on, the frequency switching speed is < 1 ms (measured) for list mode and SCPI mode cached frequency points. For the initial frequency point in SCPI mode the time is < 75 ms (measured). The instrument will automatically cache the most recently used 256 frequencies. There is no speed degradation for amplitude-only changes. Internal Channel Correction applies to FW A.01.60 or greater with Option N5162/82AK-R2C.</p>

Accuracy ± aging rate

± temperature effects± line voltage effects

Internal time base reference

oscillator aging rate $\leq \pm 5 \text{ ppm/10 yrs, } < \pm 1 \text{ ppm/yr (nom)}^{1}$

Temperature effects $\pm 1 \text{ ppm } (0 \text{ to } 55 \text{ °C}) \text{ (nom)}$

Line voltage effects \pm 0.1 ppm (nom); 5% to -10% (nom)

Reference output

Frequency 10 MHz

Amplitude \geq +4 dBm (nom) into 50 Ω load

External reference input

Input frequency Standard Option 1ER

10 MHz 1 to 50 MHz (in multiples of 0.1 Hz)

Lock range ± 1 ppm

Amplitude > -3.5 to 20 dBm (nom)

 $\begin{array}{ll} \text{Impedance} & \quad 50 \; \Omega \; (\text{nom}) \\ \text{Waveform} & \quad \text{Sine or square} \end{array}$

Digital sweep modes

Operating modes Step sweep (equally or logarithmically spaced

frequency steps)

List sweep (arbitrary list of frequency steps)

Can also simultaneously sweep amplitude and waveforms. See amplitude and baseband generator sections

for more detail.

Sweep range Within instrument frequency range

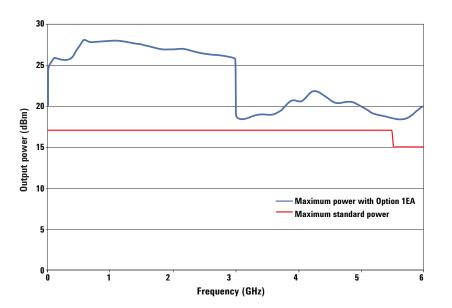
Dwell time 100 µs to 100 s

Number of points 2 to 65535 (step sweep)

1 to 3201 (list sweep)

Step change Linear or logarithmic

Triggering Free run, trigger key, external, timer, bus (GPIB, LAN, USB)


^{1.} Aging rate is determined by design as a function of the TCXO. It is not specified.

Amplitude

Output power 1

Minimum output power -110 dBm with Option 1EQ -127 dBm^2

Range	Standard ³	Option 1EA	
100 kHz to 50 MHz	+13 dBm	+15 dBm	
> 50 MHz to 3 GHz	+13 dBm	+23 dBm	
> 3 GHz to 5.0 GHz	+13 dBm	+17 dBm	
> 5.0 GHz	+11 dBm	+16 dBm	

Resolution 0.01 dB (nom)

Step attenuator 0 to 130 dB in 5 dB steps, electronic type

Connector 50 Ω (nom)

SWR⁴

≤ 1.7 GHz	1.4:1 (typ)
> 1.7 to 3 GHz	1.55:1 (typ)
> 3 to 4 GHz	1.7:1 (typ)
> 4 to 6 GHz	1.6:1 (tvn)

Maximum reverse power

Max DC voltage 50 VDC (nom) 100 kHz to 6 GHz 2 W (nom)

Quoted specifications between 20 and 30 °C. Maximum output power typically decreases by 0.04 dB/°C for temperatures outside this range.

^{2.} Settable to -144 dBm with Option 1EQ, but unspecified below -127 dBm.

^{3.} Specifications apply to units with serial numbers ending with 4818xxxx or greater.
For units with lower serial numbers refer to the Archive Section at the end of this document.

SWR values apply to units with serial numbers ending with 4818xxxx or greater.
 For units with lower serial numbers refer to the Archive Section at end of this document.

Switching speed ^{1, 2}

Туре	Standard	Option UNZ	Option UNZ typical
Digital modulation off			
SCPI mode	≤ 5 ms (typ)	≤ 750 μs	≤ 650 µs
List/Step sweep mode	≤ 5 ms (typ)	≤ 500 μs	≤ 400 μs
Digital modulation on			
SCPI mode	≤ 5 ms (typ)	≤ 1.15 ms	≤ 950 µs
List/Step sweep mode	≤ 5 ms (typ)	≤ 900 µs	≤ 700 µs

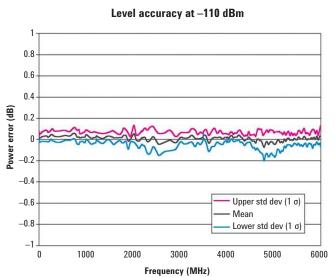
Absolute level accuracy in CW mode ³ [ALC on]

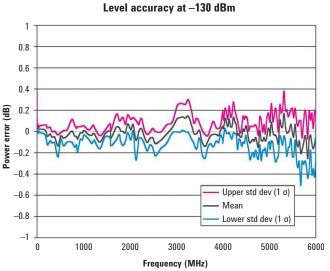
_	Standard		Option 1EQ
+	23 ⁵ to -60 dBm	< -60 to -110 dBm	< –110 to –127 dBm
100 kHz to 250 kHz 4	±0.6 dB	±1.0 dB	_
> 250 kHz to 1 MHz	±0.6 dB	±0.7 dB	±1.7 dB
> 1 MHz to 1 GHz	±0.6 dB	±0.7 dB	±1.0 dB
> 1 to 3 GHz	±0.6 dB	±0.8 dB	±1.1 dB
> 3 to 4 GHz	±0.7 dB	±0.8 dB	±1.1 dB
> 4 to 6 GHz	±0.8 dB	±1.1 dB	±1.3 dB

Time from receipt of SCPI command or trigger signal to amplitude settled within 0.2 dB. For
units with serial numbers ending in 4742xxxx or less, switching speed is specified for power
levels < +5 dBm.

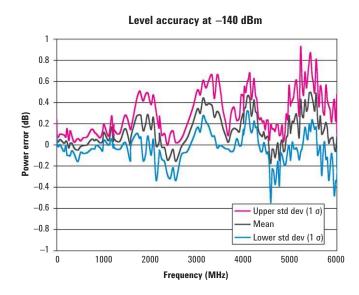
^{2.} Switching speed specifications apply when status register updates are off.

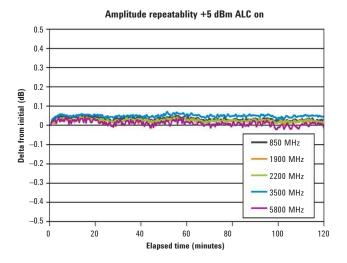
Quoted specifications between 20 °C and 30 °C. For temperatures outside this range, absolute level accuracy degrades by 0.005 dB/°C for frequencies ≤ 4.5 GHz and 0.01 dB/°C for frequencies > 4.5 GHz. Output power may drift up to .003 dB per g/Kg change in specific humidity (nom).

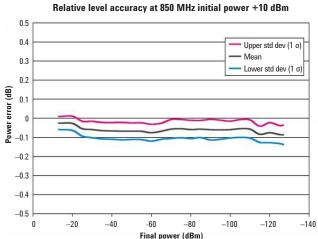

Specification applies to units with serial numbers ending with 4818xxxx or greater.
 For units with lower serial numbers refer to the Archive Section at end of this document.


^{5.} Or maximum specified output power, whichever is lower.

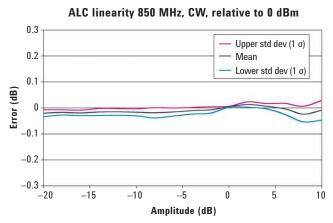
Absolute level accuracy in CW mode [ALC off, relative to ALC on]

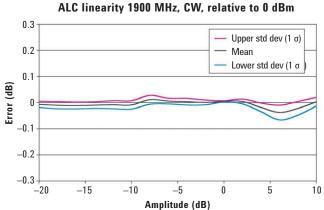

Absolute level accuracy in digital I/Q mode [ALC on, relative to CW]


300 MHz to 2.5 GHz ±0.25 dB 3.3 to 3.8 GHz ±0.45 dB 5.0 to 6.0 GHz ±0.25 dB

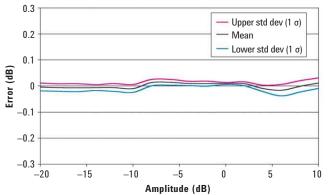


±0.35 dB (typ)

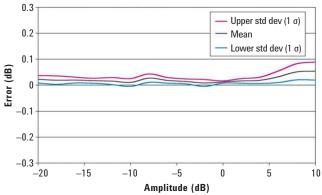




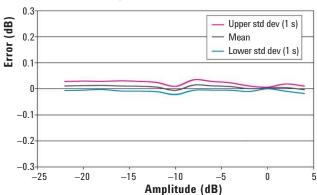
Repeatability measures the ability of the instrument to return to a given power setting after a random excursion to any other frequency and power setting. It should not be confused with absolute level accuracy.



Relative level accuracy measures the accuracy of a step change from any power level to any other power level. This is useful for large changes (i.e. 5 dB steps).



ALC linearity 2200 MHz, CW, relative to 0 dBm



ALC linearity 3500 MHz, CW, relative to 0 dBm

Linearity measures the accuracy of small changes while the attenuator is held in a steady state. This is useful for fine resolution changes.

ALC linearity 5800 MHz, CW, relative to 0 dBm

User flatness correction

Number of points 3201

Number of tables Dependent on available free memory in instrument;

10,000 maximum

Entry modes USB/LAN direct power meter control, LAN to GPIB and USB

to GPIB, remote bus and manual USB/GPIB power meter control

Digital sweep modes

Operating modes Step sweep (evenly spaced amplitude steps)

List sweep (arbitrary list of amplitude steps)

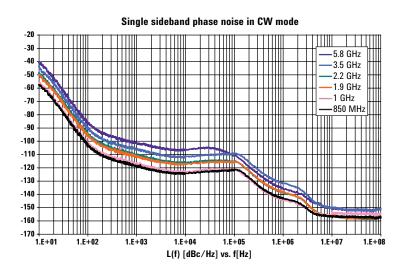
Can also simultaneously sweep frequency and waveforms. See frequency and baseband generator sections for more detail.

Sweep range Within instrument amplitude range

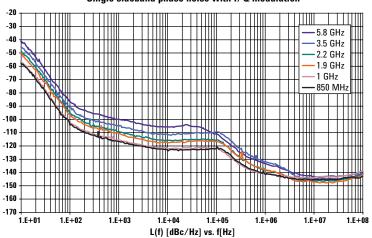
Dwell time 100 µs to 100 s

Number of points 2 to 65535 (step sweep)

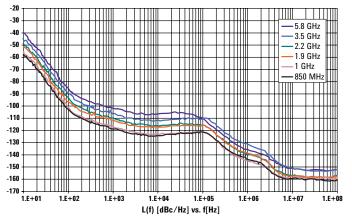
1 to 3201 (list sweep)


Step change Linear

Triggering Free run, trigger key, external, timer, bus (GPIB, LAN, USB)


Spectral Purity

Single sideband phase noise [at 20 kHz offset]


500 MHz	$\leq -126 \text{ dBc/Hz (typ)}$	3 GHz	\leq -110 dBc/Hz (typ)
1 GHz	\leq -121 dBc/Hz (typ)	4 GHz	\leq -109 dBc/Hz (typ)
2 GHz	$\leq -115 \text{ dBc/Hz (typ)}$	6 GHz	$\leq -104 \text{ dBc/Hz (typ)}$

Single sideband phase noise with I/Q modulation

Single sideband phase noise optimized signal-to-noise floor mode¹

Signal-to-noise optimized mode will improve broadband noise floor. In this mode, other specifications
may not apply. Applies to instrument serial number prefix 4818xxxx or above.

Residual FM [CW mode, 300 Hz to 3 kHz BW, CCITT, rµs] < N x 2 Hz (typ)

Harmonics ¹ [CW mode, output level]

Range	(< +4 dBm)	1EA (< +12 dBm)
250 kHz to 3 GHz	<-35 dBc	<-30 dBc
> 3 to 4 GHz	< -41 dBc (typ)	< -30 dBc (typ)
> 4 to 6 GHz	<-53 dBc (typ)	< -40 dBc (typ)

Nonharmonics ¹ [CW mode]

Subharmonics ¹ [CW mode]

250 kHz to 3.0 GHz < -73 dBc > 3.0 to 4.5 GHz < -68 dBc > 4.5 to 5.5 GHz < -56 dBc > 5.5 to 6 GHz < -52 dBc

Jitter ²

Carrier	SONET/SDH			
Frequency	Data rate	rms jitter BW	μUI rms	Femtoseconds
155 MHz	155 MB/s	100 Hz to 1.5 MHz	84	537
622 MHz	622 MB/s	1 kHz to 5 MHz	47	75
2.488 GHz	2488 MB/s	5 kHz to 20 MHz	178	72

Harmonics, subharmonics, and non-harmonics apply to instruments with serial number prefixes 4818xxxx or greater and are typical outside the frequency range of the instrument. Refer to the Archive Section at end of this document for specifications for units with lower serial numbers.

Calculated from phase noise performance in CW mode at +10 dBm. For other frequencies, data rates, or bandwidths, please consult your sales representative.

Analog Modulation

Frequency modulation ¹

(Option UNT)

Max deviation N × 10 MHz (nom)

Resolution 0.1% of deviation or 1 Hz, which ever is greater (nom)

Deviation accuracy [1 kHz rate, deviation

is N x 50 kHz] $< \pm 2\% + 20$ Hz

Modulation frequency response [at 100 kHz deviation]

	1 dB bandwidth	3 dB bandwidth
DC coupled	DC to 3 MHz (nom)	DC to 7 MHz (nom)
AC coupled	5 Hz to 3 MHz (nom)	5 Hz to 7 MHz (nom)
Carrier frequency accuracy	$< \pm 0.2\%$ of set deviation	
relative to CW in DCFM		+ $(N \times 1 Hz)^2$
		$< \pm 0.06\%$ of set deviation

+ (N \times 1 Hz) (typ) 3 Distortion [1 kHz rate, deviation is N \times 50 kHz] < 0.4%

Sensitivity when using external input +1 V peak for indicated deviation (nom)

Phase modulation ¹

(Option UNT)

Modulation deviation and frequency response:

	Max dev	3 dB bandwidth
Normal BW	N × 5 radians (nom)	DC to 1 MHz (nom)
High BW mode	N × 0.5 radians (nom)	DC to 4 MHz (nom)
Resolution	0.1% of deviation (nom)	
Deviation accuracy [1 kHz	rate, normal BW mode]	< +0.5% + 0.01 rad (typ)
Distortion [1 kHz rate, dev	ation	
normal BW mode]		< 0.2% (typ)
Sensitivity when using ext	ernal input	+1 V peak for indicated
		deviation (nom)

Amplitude modulation ^{1, 4}

(Option UNT)

AM depth type Linear or exponential

Depth

Maximum 100%

Resolution 0.1% of depth (nom) Depth accuracy [1 kHz rate] $< \pm 4\%$ of setting +1% (typ)

Modulation rate [3 dB BW]

DC coupled 0 to 10 kHz (typ)
AC coupled 5 Hz to 10 kHz (typ)

Distortion [1 kHz rate] < 2% (typ)

Sensitivity when using external input +1 V peak for indicated depth (nom)

^{1.} N is a factor used to help define certain specifications. Refer to page 4 for N value.

^{2.} Specification valid for temperature changes of less than \pm 5 °C since last DCFM calibration.

^{3.} Typical performance immediately after a DCFM calibration.

^{4.} AM is specified at carrier frequencies from 1 MHz to 3 GHz, power levels ≤ ±4 dBm, and with ALC on and envelope peaks within ALC operating range (−20 dBm to maximum specified power, excluding step-attenuator setting).

Internal analog modulation source

(Single sine wave generator for use with AM, FM, phase modulation. Requires Option UNT)

Waveform Sine

Rate range 0.1 Hz to 2 MHz (tuneable to 3 MHz)

Resolution 0.1 Hz

Frequency accuracy Same as RF reference source (nom)

Pulse modulation

(Option UNU) 1

On/Off ratio > 80 dB (typ) Rise time < 50 ns (typ) Fall time < 50 ns (typ)

Minimum width

ALC on \geq 2 μ s ALC off \geq 500 ns Resolution 20 ns (nom)

Pulse repetition frequency

 $\begin{array}{ccc} ALC \ on & DC \ to \ 500 \ kHz \\ ALC \ off & DC \ to \ 2 \ MHz \\ Level \ accuracy & <1 \ dB \ (typ) \end{array}$

(relative to CW, ALC on or off)

Video feedthrough< 250 mV (typ) 2 Pulse overshoot< 15% (typ)Pulse compression5 ns (typ)

Pulse delay

RF delay (video to RF output) 10 ns (nom) Video delay (ext input to video) 30 ns (nom)

External input

Input impedance 50 ohm (nom)
Level +1 Vpeak = ON (nom)

Internal pulse generator

Modes Free-run, square, triggered, adjustable doublet,

trigger doublet, gated, and external pulse

Square wave rate 0.1 Hz to 10 MHz, 0.1 Hz resolution (nom)

Pulse period 500 ns to 42 seconds (nom)

Pulse width 500 ns to pulse period - 10 ns (nom)

Resolution 10 ns

Adjustable trigger delay: -pulse period + 10 ns to pulse period

to pulse width -10 ns

Settable delay

Free run -3.99 to 3.97 µs
Triggered 0 to 40 s

Resolution

[delay, width, period] 10 ns (nom)

Pulse doublets

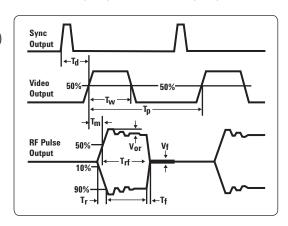
1st pulse delay

(relative to sync out) 0 to 42 s - pulse width - 10 ns1st pulse width 500 ns to 42 s - delay - 10 ns

2nd pulse delay

(relative to pulse 1) 0 to 42 s - (delay1 + width2) - 10 ns2nd pulse width 20 ns to 42 s - (delay1 + delay2) - 10 ns

^{1.} Pulse specifications apply to frequencies > 500 MHz. Operable down to 10 MHz.


Specification applies for power levels < 10 dBm.

Narrow pulse modulation

(Option UNW) 1

	500 MHz to 3.0 GHz	Above 3.0 GHz
On/Off ratio	> 80 dB (typ)	> 80 dB (typ)
Rise/Fall times (Tr, Tf)	< 10 ns; 7 ns (typ)	< 10 ns; 7 ns (typ)
Minimum pulse width		
Internally leveled	≥ 2 µs	≥ 2 µs
ALC off ²	≥ 20 ns	≥ 20 ns
Repetition frequency		
Internally leveled	10 Hz to 500 kHz	10 Hz to 500 kHz
ALC off ²	dc to 5 MHz	dc to 10 MHz
Level accuracy (relative to CW)		
Internally leveled	< ±1.0 dB	$< \pm 1.0 \text{ dB}$
ALC off ²	$< \pm 1.0 \text{ dB (typ)}$	$< \pm 1.0 \text{ dB (typ)}$
Width compression	< 5 ns (typ)	< 5 ns (typ)
(RF width relative to video out)		
Video feed-through ³	< 50 mV (typ)	< 5 mV (typ)
Video delay (ext input to video)	20 ns (nom)	20 ns (nom)
RF delay (video to RF output)	10 ns (nom)	10 ns (nom)
Pulse overshoot	< 15% (typ)	< 15% (typ)
Input level	+1 Vpeak = RF On	+1 Vpeak = RF On
Input impedance	50 Ω (nom)	50 Ω (nom)

Td Video delay (variable)
Tw Video pulse width (variable)
Tp Pulse period (variable)
Tm RF delay
Trf RF pulse width
Tf RF pulse fall time
Tr RF pulse rise time
Vor Pulse overshoot
Vf Video feedthrough

External modulation inputs ⁴

(Requires Option UNT)

Modulation types FM, AM, phase mod, pulse mod

Input impedance 50 Ω (nom)

Simultaneous modulation $^{\it 5}$

All modulation types (FM, AM, ϕ M and pulse modulation) may be simultaneously enabled except: FM and phase modulation can not be combined; two modulation types can not be simultaneously generated using the same modulation source. For example the baseband generator, AM, and FM can run concurrently and all will modulate the output RF. This is useful for simulating signal impairments.

^{1.} Pulse specifications apply to frequencies > 500 MHz. Operable down to 10 MHz.

^{2.} With power search on.

^{3.} Video feed through applies to power levels < +10 dBm.

Option UNT required for FM, AM, and phase mod inputs. Option UNU or UNW required for pulse modulation inputs.

^{5.} If AM or pulse modulation are on then phase and FM specifications do not apply.

Vector Modulation

I/Q input and output data 1

External I/Q inputs ²

Impedance 50 Ω (nom)

Bandwidth Up to 100 MHz baseband (nom)

Up to 200 MHz RF (nom)

I offset ±100 mV Q offset ±100 mV ±200 units Quadrature angle adjustment

For optimum ACPR/EVM performance up to specified RF output power. ³

Range	I, Q (rms)	rss
100 kHz to 1.2 GHz	132 mV	187 mV
1.2 GHz to 1.45 GHz	123 mV	174 mV
1.45 GHz to 2.2 GHz	114 mV	161 mV
2.2 GHz to 2.45 GHz	100 mV	141 mV
2.45 GHz to 3.0 GHz	81 mV	115 mV
3.0 GHz to 3.9 GHz	112 mV	158 mV
3.9 GHz to 4.5 GHz	132 mV	187 mV
4.5 GHz to 5.8 GHz	90 mV	127 mV
5.8 GHz to 6 GHz	25 mV	35 mV

Internal I/Q from baseband generator

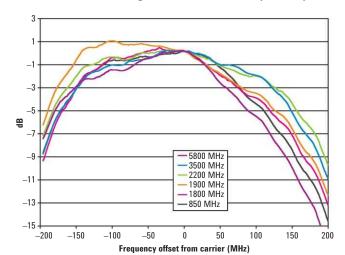
I offset	±20%
Q offset	±20%
I/Q gain	±1 dB
Quadrature angle adjustment	±10°
I/Q skew	±800 ns
I/Q delay	±400 ns

External I/Q outputs

Impedance 50 Ω (nom) per output

100 ohm (nom) differential output

Single ended or differential (Option 1EL) Type

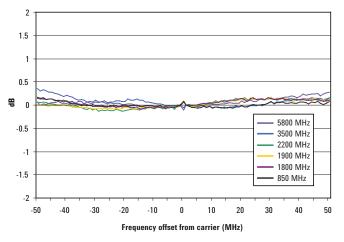

Maximum voltage per output ±2 V peak to peak; into high impedance

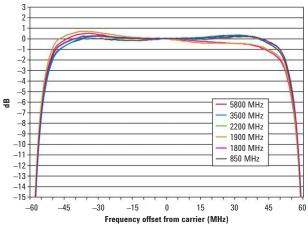
Bandwidth 50 MHz baseband (nom)

100 MHz RF (nom)

Common mode I/Q offset ±5 V into high impedance Differential mode I offset ±50 mV into high impedance ±50 mV into high impedance Differential mode Q offset

I/Q bandwidth using external I/Q source (ALC off).


^{1.} I/Q adjustments represent user interface


parameter ranges and not "specifications." ALC must be on while using external IQ

ACPR/EVM degrades beyond listed RF output power.

I/O bandwidth plot using optional internal baseband generator (Internal Channel Corrections ON)²

I/Q bandwidth plot using optional internal baseband generator

Baseband Generator

(Options 651, 652, 654)

Channels 2 [I and Q]

Sample rate and bandwidth
Option 651
100 Sa/s to 30 MSa/s
Option 652
100 Sa/s to 60 MSa/s
Option 654
100 Sa/s to 125 MSa/s
100 MHz

Effective DAC resolution 11 bits

16 bits (Option UNV)

Reconstruction filter 50 MHz
Baseband frequency offset range ± 50 MHz

Waveform switching speed

Туре	Standard	Option UNZ
SCPI mode ¹	≤ 5 ms (typ)	≤ 1.2 ms (typ)
List/Step sweep mode	≤ 5 ms (typ)	≤ 900 µs (typ)
Digital sweep modes		In list sweep mode each point in the list
		can have independent waveforms along
		with user definable frequencies and
		amplitudes. See the amplitude and frequency
		sections for more detail.

Data transfer rates

LAN to non-volatile storage 161 kSa/s (meas) LAN to baseband generator 265 kSa/s (meas)

Non-volatile storage to

baseband generator 262 kSa/s (meas)

^{1.} SCPI mode switching speed applies when waveforms are pre-loaded in list sweep and sample rate \geq 10 MSa/s.

Internal Channel Correction is available with firmware revision A.01.60 and Option N5182/62AK-R2C.

Arbitrary waveform memory

Maximum playback capacity 8 MSa, 64 MSa (Option 019)

Maximum storage capacity

including markers 800 MSa

Waveform segments

Segment length 60 samples to 8 MSa

60 samples to 64 MSa (Option 019)

Maximum number of segments 1024, 8192 (Option 019)

in baseband generator playback

memory

8192 Maximum number of segments

in non-volatile memory

Minimum memory allocation 256 samples

per segment Waveform sequences

Maximum number of sequences Up to 2000 depending on memory usage

Maximum number of 1024 segments/sequence

Maximum number of repetitions 65535

Triggers

Types Continuous, single, gated, segment advance Source Trigger key, external, bus (GPIB, LAN, USB)

Modes

Continuous Free run, trigger and run, reset and run

Single No retrigger, buffered trigger,

immediate retrigger

Gated Negative polarity or positive polarity

Segment advance Single or continuous

External delay time 8 ns to 30 s

External delay resolution 8 ns

Trigger latency ¹ 490 ns + 1 sample clock period (nom)

Trigger accuracy 1 ±4 ns (nom)

[Markers are defined in a segment during the waveform generation process, or from the front panel. A marker can also be routed to the RF blanking and ALC Hold functions]

Marker polarity Negative, positive

Number of markers

Burst on / off ratio > 80 dB (typ)

AWGN [Option 403]

Real-time, continuously calculated and Type

played using DSP

Modes of operation Standalone or digitally added to arbitrary

waveform

Bandwidth ² 1 Hz to 100 MHz

Crest factor 15 dB

90 bit pseudo-random generation, repetition Randomness

period 313 x 10 9 years

Carrier to noise ratio ± 100 dB when added to arbitrary

waveforms

Carrier to noise ratio error Magnitude error ≤ 0.2 dB at baseband I/Q

outputs

Single trigger mode only. 1.

Maximum bandwidth depends on installed baseband generator options.

Custom modulation (Option 431)

Multicarrier

Number of carriers Up to 100 [limited by a max bandwidth of

80 MHz depending on symbol rate and

modulation type]

Frequency offset [per carrier] —40 MHz to +40 MHz
Power offset [per carrier] 0 dB to -40 dB
Symbol rate 50 sps to 62.5 Msps

Filter types Nyquist, Root Nyquist, Gaussian,

Rectangular, APCO 25 C4EM, user

Modulation

PSK BPSK, QPSK, OQPSK, π/4DQPSK,

8PSK, 16PSK, D8PSK 4, 16, 32, 64, 128, 256 Selectable: 2, 4, 8, 16

FSK MSK ASK

MAD

Quick Setup modes APCO 25w/C4FM, APCO25 w/CQPSK,

Bluetooth, CDPD, DECT, EDGE, GSM, NADC, PDC, PHS, PWT, TETRA

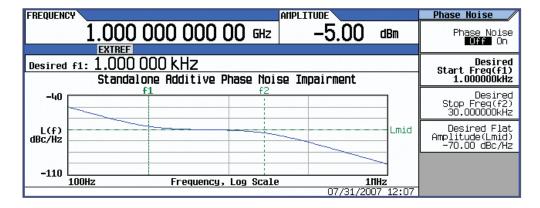
Data Random only

Multitone and two-tone (Option 430)

Number of tones 2 to 64, with selectable on/off state per tone

Frequency spacing 100 Hz to 100 MHz
Phase [per tone] Fixed or random

Real-time Phase Noise Impairments (Option 432)


Close-in phase noise characteristics —20 dB/decade slope Far-out phase noise characteristics —20 dB/decade slope

Mid frequency characteristics

Start frequency (f1)
Offset settable from 0 to 48 MHz
Stop frequency (f2)
Offset settable from 0 to 48 MHz

 $\label{eq:continuous} Phase \ noise \ amplitude \ level \ (L(f)) \\ \qquad \qquad User \ selected; \ max \ degradation \ dependent$

on f2

EVM performance data ^{1, 2}

Format	GSM	EDGE	cdma2000/1xEV-D0	W-CDMA
Modulation type	GMSK (bursted)	3pi/8 8PSK (bursted)	QPSK	QPSK
Modulation rate	270.833 ksps	270.833 ksps	1.2288 Mcps	3.84 Mcps
Channel configuration	1 timeslot	1 timeslot	pilot channel	1 DPCH
Frequency ³	800 to 900 MHz	800 to 900 MHz	800 to 900 MHz	
	1800 to 1900 MHz	1800 to 1900 MHz	1800 to 1900 MHz	1800 to 2200 MHz
EVM power level	≤ 7 dBm	≤ 7 dBm	≤ 7 dBm	≤ 7 dBm
EVM power level	≤ 13 dBm	≤ 13 dBm	≤ 13 dBm	≤ 13 dBm
with Option 1EA				
EVM	Global phase error	Spec Typ	Spec Typ	Spec Typ
	Spec Typ	1.2% 0.7%	1.3% 0.8%	1.2% 0.8%
	rms 0.8 ° 0.2 °			
	peak 1.5° 0.6°			
Format	802.11a/g	802.16e WiMAX ⁴	QPSK ⁵	16QAM ⁵
Modulation type	64QAM	64QAM	QPSK	16QAM
Modulation rate	54 Mbps	_	4 MSps	4 MSps
Frequency ³	2400 to 2484 MHz	2300 to 2690 MHz	≤ 3 GHz ≤ 6 GH	z ≤ 3 GHz ≤ 6 GHz
	5150 to 5825 MHz	3300 to 3800 MHz		
EVM power level	≤ –5 dBm	≤ 2 dBm	≤ 4 dBm ≤ 4 dBi	m ≤ 4 dBm ≤ 4 dBm
EVM power level	≤ 2 dBm	≤ 8 dBm	≤ 10 dBm ≤ 10 dE	Bm ≤ 10 dBm ≤ 10 dBm
with Option 1EA				

3GPP W-CDMA distortion performance

0.51% (measured)

EVM

Offset	Configuration	Frequency	Standard	Option UNV	Option UNV with
					Option 1EA
Power level			≤-7 dBm	≤-7 dBm	≤5 dBm
			Ѕрес Тур	Spec Тур	Spec Тур
Adjacent (5 MHz)	1 DPCH, 1 carrier	1800 to 2200 MHz	-68 dBc −70 dBc	−71 dBc −73 dBc	−71 dBc −73 dBc
Alternate (10 MHz)	_		-69 dBc −70 dBc	−71 dBc −75 dBc	−71 dBc −75 dBc
Adjacent (5 MHz)	Test model 1 with	1800 to 2200 MHz	-64 dBc −65 dBc	−71 dBc −73 dBc	−71 dBc −73 dBc
Alternate (10 MHz)	64 DPCH, 1 carrier		-67 dBc −67 dBc	−71 dBc −75 dBc	−71 dBc −75 dBc
Adjacent (5 MHz)	Test model 1 with	1800 to 2200 MHz	-57 dBc −59 dBc	-65 dBc −67 dBc	-64 dBc -66 dBc
Alternate (10 MHz)	64 DPCH, 4 carrier		-57 dBc -60 dBc	-66 dBc -68 dBc	-66 dBc -68 dBc

Spec

1.2%

Typ

0.8%

Spec

1.1%

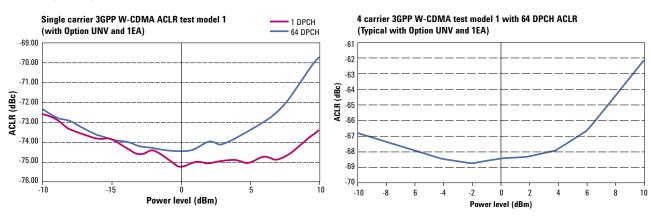
Typ

0.6%

Spec

1.5%

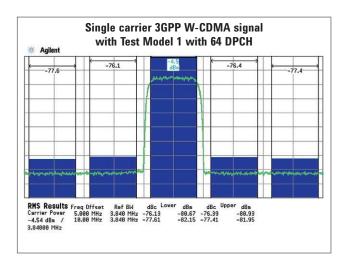
Тур


0.9%

Тур

1.1%

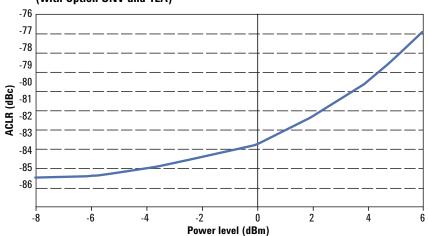
Spec


1.9%

1. EVM specifications apply for the default ARB file setup conditions with the default ARB files supplied with the instrument.

0.4% (measured)

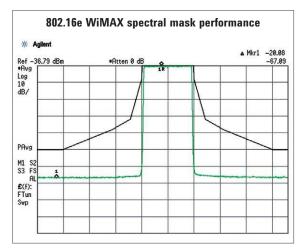
- 2. EVM specifications apply after execution of an I/Q calibration when the instrument is maintained within ± 5 °C of the calibration temperature.
- 3. Performance evaluated at bottom, middle and top of bands shown.
- 4. 802.16e WiMAX signal configuration: bandwidth: 10 MHz, FFT: 1024, frame length: 5 ms, guard period: 1/8, symbol rolloff: 5%, content: 30 symbols of PN9 data.
- 5. The QPSK and 16QAM signals were tested with a root Nyquist filter with $\alpha = 0.2$



3GPP2 cdma2000 distortion performance

Offset	Configuration	Frequency	Standard (typ)	Option UNV (typ)	Option UNV with Option 1EA (typ)
			Power $\leq -7 \text{ dB}$	Power ≤ –7 dB	Power ≤ 5 dB
885 kHz to 1.98 MHz	9 channel forward link	800 to 900 MHz	-78 dBc	-79 dBc	-77 dBc
> 1.98 to 4.0 MHz	1	1800 to 2200 MHz	-83 dBc	-87 dBc	-87 dBc
> 4.0 to 10 MHz	1		-88 dBc	–93 dBc	-93 dBc

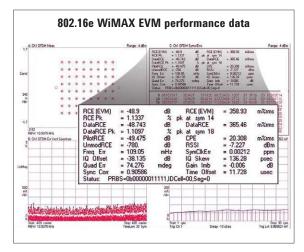
3GPP2 cdma2000 ACLR 9 channel forward link (with Option UNV and 1EA)



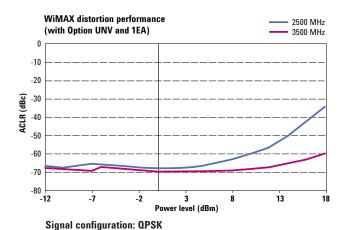
GSM / EDGE output RF spectrum (ORFS) 1

	•	•	` G	SM	El	DGE
Offset	Configuration	Frequency ²	Standard	Option UNV	Standard	Option UNV
(typ)		_	(typ)	(typ)	(typ)	(typ)
200 kHz	1 normal	800 to	−33 dBc	–37 dBc	−35 dBc	-39 dBc
400 kHz	timeslot.	900 MHz	−67 dBc	−71 dBc	−67 dBc	-71 dBc
600 kHz	bursted	1800 to	−79 dBc	-83 dBc	−78 dBc	-82 dBc
800 kHz	bursteu	1900 MHz	−80 dBc	-84 dBc	−80 dBc	-84 dBc
1200 kHz		1300 101112	−82 dBc	-86 dBc	−81 dBc	-85 dBc

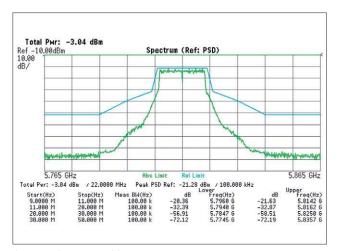
802.16e mobile WiMAX distortion performance ³


Power level	Offset	Configuration ^{3,}	^{,4} Frequency	Standard (n	neas) UNV (meas)
< -7 dBm	10 MHz	QPSK	2.5 and 3.5 GHz	-62 dBc	-66 dBc
Up to +5 dBm	10 MHz	QPSK	3.5 GHz	-61 dBc	-65 dBc

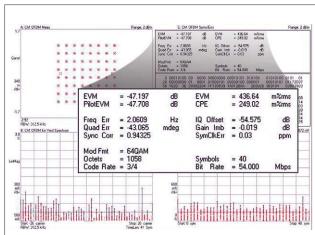
10 MHz bandwidth


Power level: -7 dBm

Signal configuration: Downlink signal, 30 symbols, 64QAM,


10 MHz bandwidth

Power level: -7 dBm



- 1. Specifications apply for power levels \leq +7 dBm.
- 2. Performance evaluated at bottom, middle and top of bands shown.
- 802.16e WiMAX signal configuration: bandwidth: 10 MHz, FFT: 1024, frame length: 5 ms, guard period: 1/8, symbol rolloff: 5%, content: 30 symbols of PN9 data.
- 4. Measurement configuration: reference channel integration BW: 9.5 MHz, offset channel integration BW: 9 MHz, channel offset: 10 MHz.

WLAN

Signal configuration: OSR: 4
Window length: 16
Power level: 0 dBm
Carrier frequency: 5.805 GHz

Signal configuration: OSR: 4 Window length: 16 Power level: 0 dBm Carrier frequency: 5.805 GHz

802.11a WLAN spectral mask performance

802.11a WLAN EVM performance

^{1.} Specifications apply for power levels $\leq +7$ dBm.

^{2.} Performance evaluated at bottom, middle and top of bands shown.

^{3. 802.16}e WiMAX signal configuration: bandwidth: 10 MHz, FFT: 1024, frame length: 5 ms, guard period: 1/8, symbol rolloff: 5%, content: 30 symbols of PN9 data.

^{4.} Measurement configuration: reference channel integration BW: 9.5 MHz, offset channel integration BW: 9 MHz, channel offset: 10 MHz.

QPSK

1000

1750

2500

Measured EVM performance versus carrier frequency

(Internal Channel Corrections OFF and ON)1

3000

Frequency (MHZ)

4000

5000

Frequency (MHZ)

3250

4000

4750

250

Measured EVM performance versus carrier frequency

ALC ON

Alpha: 0.25 +4 dBm Power level: 4 MSymb/s Symbol rate:

2

EVM (% RMS) 1.5 0.5 0.5

0

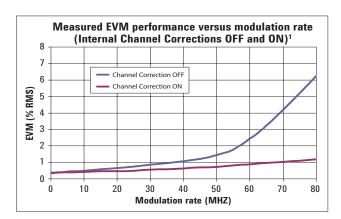
9

8

5

4

3


2

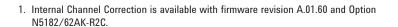
0

EVM (% RMS) 6 25

Signal configuration: QPSK modulation

Alpha: 0.25 +4 dBm Power level: Carrier frequency 2.2 GHz

Signal configuration: QPSK modulation


1000

2000

Alpha: 0.25 +4 dBm Power level: Symbol rate: 62.5 MSymb/s

Signal configuration: QPSK modulation

Alpha: 0.25 Power level: +4 dBm Carrier frequency 2.2 GHz

General Characteristics

Remote programming

Interfaces GPIB IEEE-488.2, 1987 with listen and talk

LAN 100BaseT LAN interface,

LXI class C compliant

USB Version 2.0

Control languages SCPI Version 1997.0

Compatibility languages supporting 100% of commonly used commands ¹

Agilent Technologies E4438C, E4428C, E442xB, E443xB, E8241A,

E8244A, E8251A, E8254A, E8247C, E8257C/D, E8267C/D, 8648 series, 8656B, E8663B, 8657A/B

Aeroflex Incorporated 3410 series

Rohde & Schwarz SMU200A, SMJ100A, SMATE200A, SMIQ,

SML, SMV

0 to 55 °C

Power requirements 100 to 120 VAC, 50 to 60 Hz, 400 Hz

220 to 240 VAC, 50 to 60 Hz, 400 Hz

250 W maximum

Operating temperature range
Storage temperature range
Operating and storage altitude
Environmental stress

-40 to 70 °C Up to 15,000 feet

Samples of this product have been type tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the

Manual and verified to be robust against the environmental stresses of Storage, Transportation and End-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power line conditions. Test Methods are aligned with IEC 60068-2 and levels are similar

to MIL-PRF-28800F Class 3.

Safety/EMC Complies with applicable Safety and EMC

regulations and directives.

Memory is shared by instrument states, user

data files, sweep list files, waveform sequences, and other files. There are 4 GB of flash memory available in the N5182A MXG. Depending on how the memory is utilized, a maximum of 1000

instrument states can be saved.

Security (Option 006) Memory sanitizing, memory sanitizing on power

on, and display blanking

Self test Internal diagnostic routines test most modules in

a preset condition. For each module, if its node voltages are within acceptable limits, the

module "passes" the test.

^{1.} Firmware version A.01.10 and later.

Weight $\leq 12.5 \text{ kg } (27.5 \text{ lb.}) \text{ net, } \leq 27.2 \text{ kg } (60 \text{ lb.}) \text{ shipping}$

dimensions 103 mm H x 426 mm W x 432 mm L [3.5 in H x 16.8 in W x 17 in L]

Recommended calibration cycle 24 months

ISO compliant The Agilent N5182A MXG is manufactured in an ISO-9001

registered facility in concurrence with Agilent Technologies'

commitment to quality.

Front panel connectors ¹

RF output ²
I and Q inputs ²

Outputs the RF signal via a precision N type female connector. Accepts "in-phase" and "quadrature" input signals for I/ Ω modulation. Nominal input impedance is 50 Ω . Damage

levels are 1 Vrms and 5 Vpeak.

USB 2.0 Used with a memory stick for transferring instrument states,

licenses and other files into or out of the instrument. Also used with U2000 Series USB average power sensors. For a current list of supported memory sticks, visit www.agilent.com/find/MXG, click on Technical Support, and refer to FAQs: Waveform Downloads and Storage.

Rear panel connectors ¹

I and Q outputs

AM

RF output

(Option 1EM or N5162A)

I and Q inputs

(Option 1EM or N5162A)

Outputs the RF signal via a precision N type female connector.

Accepts "in-phase" and "quadrature" input signals for I/Q modulation. SMB connector, nominal input impedance is 50 Ω . Damage levels are 1 Vrms and 5 Vpeak. Option 1EM and N5162A units will come with 2 SMB to BNC adapters. Outputs the analog I/Q modulation signals from the internal

baseband generator. Nominal output impedance 50 Ω ,

DC coupled. Damage levels ±2 V.

 $\overline{1}$ and $\overline{0}$ outputs

Outputs the complement of the I and $\overline{0}$ signals for differential (Option 1EL)

applications. Nominal output impedance is 50 Ω , DC-coupled.

Damage levels are ±2 V.

EXT Clk Reserved for future use.

Event 1 This connector outputs the programmable timing signal

generated by marker 1. The marker signal can also be routed internally to control the RF blanking and ALC hold functions. This signal is also available on the AUX I/O connector. This output is TTL and 3.3 V CMOS compatible. Damage

levels are > +8 V and < -4 V.

Pattern trigger Accepts signal to trigger internal pattern generator to start

single pattern output, for use with the internal baseband generator (Option 651, 652, 654). Accepts CMOS 3 signal with minimum pulse width of 100ns. Female BNC; Damage levels

are > +8 V and < -4 V.

Sweep out Generates output voltage, 0 to +10 V when the signal

generator is sweeping. This output can also be programmed to indicate when the source is settled or output pulse video and

is TTL and CMOS compatible in this mode. Output

impedance < 1 $\Omega,$ can drive 2 k $\Omega.$ Damage levels are ±15 V.

External AM input. Nominal input impedance is 50 Ω .

Damage levels are ± 5 V.

FM External FM input. Nominal input impedance is 50 Ω .

Damage levels are ±5 V.

^{1.} All connectors are BNC unless otherwise noted.

^{2.} All N5162A MXG ATE connectors located on rear panel.

Rear panel inputs and outputs are 3.3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

Pulse External pulse modulation input. This input is TTL and

> CMOS compatible. Low logic levels are 0 V and high logic levels are +1 V. Nominal input impedance is 50 Ω . Input

damage levels are ≤ -0.3 V and $\geq +5.3$ V.

Trigger in Accepts TTL and CMOS level signals for triggering

and ≥ +5.3 V.

Trigger out Outputs a TTL and CMOS compatible level signal for use

> with sweep mode. The signal is high at start of dwell, or when waiting for point trigger in manual sweep mode; low when dwell is over or point trigger is received. This output can also be programmed to indicate when the source is settled, pulse synchronization, or pulse video. Nominal output impedance 50 ohms. Input damage levels are

 $\leq -0.3 \text{ V} \text{ and } \geq +5.3 \text{ V}.$

Accepts a 10 MHz reference signal used to frequency lock

the internal timebase. Option 1ER adds the capability to lock to a frequency from 1 MHz to 50 MHz. Nominal input level -3.5 to +20 dBm, impedance 50 Ω , sine or square

waveform.

10 MHz out Outputs the 10 MHz reference signal used by internal

> timebase. Level nominally +3.9 dBm. Nominal output impedance 50 Ω . Input damage level is +16 dBm. Accepts a signal from a master signal generator that is used as the LO for MXG vector in order to configure a

> phase coherent system of 2 to 4 MXG vector signal generators. Nominal input levels between 0 to +7 dBm.

Nominal input impedance 50 Ω .

Outputs a reference signal that can be supplied to up

to 4 MXG vector signal generators in a phase coherent system. Nominal output levels between 0 to 7 dBm.

Nominal output impedance 50 Ω .

Reserved for future use.

Aux 10 The AUX I/O connector provides additional digital signal

outputs as follows.

Event 1 - 4 (Pin 1 - 4) This connector outputs programmable timing signals generated by markers 1 - 4. The marker signals can also routed internally to control the RF blanking and ALC hold functions. This output is TTL and 3.3 V CMOS

compatible. Damage levels are > +8 V and < -4 V. The USB connector provides remote programming

functions via SCPI.

LAN (100 BaseT) The LAN connector provides the same SCPI remote

> programming functionality as the GPIB connector. The LAN connector is also used to access the internal web server and FTP server. The LAN supports DHCP, sockets SCPI, VXI-11 SCPI, connection monitoring, dynamic hostname services, TCP keep alive. This interface is LXI class C and B compliant. Trigger response time for the immediate LAN trigger is 0.5 ms (minimum), 4 ms (maximum), 2 ms typical; delayed/alarm triger is unknown. Trigger output response time is 0.5 ms (minimum), 4 ms (maximum), 2 ms typical.

The GPIB connector provides remote programming

functionality via SCPI.

point-to-point in sweep mode. Damage levels are ≤ -0.3 V

Reference input

LO in (Option 012)

LO out (Option 012)

Digital bus I/O

(50 pin SCSI II connector)

USB 2.0

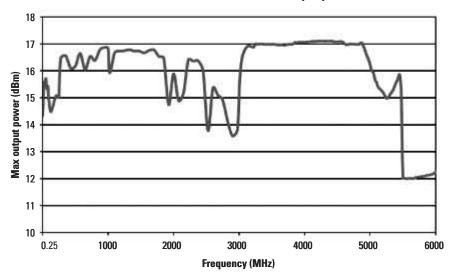
GPIB

Ordering Information

Frequency	503 506	Frequency range from 100 kHz to 3 GHz Frequency range from 100 kHz to 6 GHz
Performance enhancements	UNZ 1EA 1EQ UNU UNW UNT 006 1ER 1EM UK6 099	Fast switching High output power Low power (< -110 dBm) Pulse modulation Narrow pulse modulation AM, FM, phase modulation Instrument security Flexible reference input (1-50 MHz) Move RF output to rear panel ¹ Commercial calibration certificate with test data Expanded license key upgradeability ² LO in/out for phase coherency
Vector specific options	651 652 654 019 1EL 403 UNV 430 431	Internal baseband generator (30 MSa/s, 8 MSa) Internal baseband generator (60 MSa/s, 8 MSa) Internal baseband generator (125 MSa/s, 8 MSa) Increase baseband generator memory to 64 MSa Differential I/Q outputs Calibrated AWGN Enhanced dynamic range Multitone and two-tone Custom digital modulation Phase noise impairments
Signal Studio software	N7600B N7601B N7602B N7612B N7613A N7615B N7617B N7621B N7622A N7623B N7624B	Signal Studio for GSM/EDGE Signal Studio for TD-SCDMA Signal Studio for 802.16-2004 (WiMAX) Signal Studio for 802.16 WiMAX Signal Studio for 802.11 WLAN Signal Studio for multitone distortion test Signal Studio toolkit
Accessories	1CM 1CN 1CP 1CR AXT 800	Rackmount kit Front handle kit Rackmount and front handle kit Rack slide kit Transit case Customer service kit front panel connector configuration Customer service kit rear panel connector configuration

^{1.} Not available on N5162A MXG ATE.

^{2.} For more information on upgrades and Option 099 refer to Agilent MXG Signal Generator Configuration Guide, literature number 5989-5485EN.

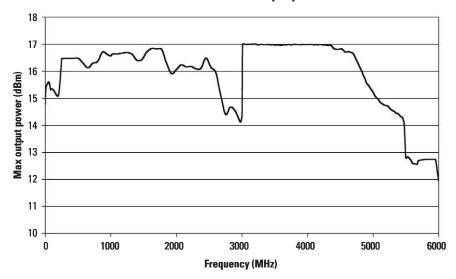

Archive Section

Frequency

Minimum frequency 100 kHz ¹

Output power	Range ²	Standard	Option 1EQ ³
(for serial number	100 kHz to 250 kHz	-110 to +4 dBm	-127 to +4 dBm
prefix 4742xxxx)	> 250 kHz to 2.5 GHz	-110 to +13 dBm	-127 to +13 dBm
	> 2.5 to 3.0 GHz	-110 to +10 dBm	-127 to +10 dBm
	> 3.0 to 4.5 GHz	-110 to +13 dBm	-127 to +13 dBm
	> 4.5 to 5.8 GHz	-110 to +10 dBm	-127 to +10 dBm
	> 5.8 to 6 GHz	-110 to +7 dBm	-127 to +7 dBm

Measured maximum available output power


Output power	Range ²	Standard	Option 1EQ ³
(for serial number	250 kHz to 2.5 GHz	-110 to +13 dBm	-127 to +13 dBm
prefixes lower than	> 2.5 to 3.0 GHz	-110 to +10 dBm	-127 to +10 dBm
4742xxxx)	> 3.0 to 4.5 GHz	-110 to +13 dBm	-127 to +13 dBm
	> 4.5 to 5.8 GHz	-110 to +10 dBm	-127 to +10 dBm
	> 5.8 to 6 GHz	-110 to +7 dBm	-127 to +7 dBm

^{1.} Performance below 250 kHz is unspecified for units with serial numbers lower than 4742xxxx.

^{2.} Quoted specifications between 20 and 30 °C. Maximum output power typically decreases by $0.2~dB/^{\circ}C$ for temperatures outside of this range.

^{3.} Settable to -144 dBm with Option 1EQ, but unspecified below -127 dBm.

Maximum available output power

SWR (for serial number prefix 4742xxxx)	≤ 2.1 GHz> 2.1 GHz to 4 GHz> 4.0 GHz 5.6 GHz> 5.6 GHz to 6 GHz	1.4:1 (typ) 1.5:1 (typ) 1.7:1 (typ) 2.0:1 (typ)
Maximum reverse power	Max DC voltage 250 kHz to 6 GHz	50 VDC (nom) 2 W (nom)
SWR (for serial number prefixes lower than 4742xxxx)	≤ 1.4 GHz > 1.4 GHz to 4 GHz > 4.0 GHz 5.0 GHz > 5.0 GHz to 6 GHz	1.7:1 (typ) 2.3:1 (typ) 2.4:1 (typ) 2.2:1 (typ)
Maximum reverse power	Max DC voltage 50 kHz to 6 GHz	50 VDC (nom) 2 W (nom)

Absolute level accuracy in CW mode ¹ [ALC on]

(for serial number prefix 4742xxxx)

	Standard		Option 1EQ
	+7 ² to -60 dBm	< -60 to -110 dBm	< -110 to -127 dBm
100 kHz to 250 kHz	±0.6 dB	±1.0 dB	
> 250 kHz to 1 MHz	±0.6 dB	±0.7 dB	±1.7 dB
> 1 MHz to 1 GHz	±0.6 dB	±0.7 dB	±1.0 dB
> 1 GHz to 3 GHz	±0.7 dB	±0.9 dB	±1.4 dB
> 3 GHz to 4 GHz	±0.8 dB	±0.9 dB	±1.0 dB
> 4 GHz to 6 GHz	±0.8 dB	±1.1 dB	±1.3 dB

Absolute level accuracy in CW mode ¹ [ALC on]

(for serial number prefixes lower than 4742xxxx)

	Standard		Option 1EQ
	+7 to -60 dBm	< -60 to -110 dBm	< -110 to -127 dBm
250 kHz to 1 MHz	±0.6 dB	±0.7 dB	±1.7 dB
> 1 MHz to 1 GHz	±0.6 dB	±0.7 dB	±1.0 dB
> 1 GHz to 3 GHz	±0.7 dB	±0.9 dB	±1.4 dB
> 3 GHz to 4 GHz	±0.8 dB	±0.9 dB	±1.0 dB
> 4 GHz to 6 GHz	±0.8 dB	±1.1 dB	±1.3 dB

Quoted specifications between 20 and 30 °C. For temperatures outside of this range, absolute level accuracy degrades by 0.01 dB/ °C for frequencies ≤ 4.5 GHz and 0.02 dB/ °C for frequencies > 4.5 GHz.

^{2.} Level accuracy specified to +7 dBm or maximum specified output power, whichever is lower.

Spectral Purity

(for serial numbers lower than 4818xxxx)

Harmonics ¹ [CW mode, output level < 4 dBm]

250 kHz to 3 GHz < -30 dBc > 3 GHz to 6 GHz < -44 dBc (typ)

Nonharmonics ¹ [CW mode], > 10 kHz offset

Subharmonics 1 [CW mode]

≤ 4 GHz
> 4 GHz to 5 GHz
> 5 GHz to 5.5 GHz
< -64 dBc
> 5 GHz to 5.5 GHz
< -50 dBc
> 5.5 GHz to 6 GHz
< -46 dBc</pre>

Related Literature

Application literature

- RF Source Basics, a self-paced tutorial (CD-ROM), literature number 5980-2060E.
- Accurate amplifier ACLR and ACPR testing with the Agilent MXG Vector Signal Generator, literature number 5989-5471EN
- Improving Throughput with Fast RF Signal Generator Switching, literature number 5989-5487EN
- Digital Modulation in Communications Systems-An Introduction, Application Note 1298, literature number 5965-7160E.
- Testing CDMA Base Station Amplifiers, Application Note 1307, literature number 5967-5486E.

Product literature

- Agilent MXG Signal Generator, Brochure, literature number 5989-5074EN
- Agilent MXG Signal Generator, Configuration Guide, literature number 5989-5485EN
- Agilent N5181A analog signal generator, Data Sheet, literature number 5989-5311EN
- E4438C ESG Vector Signal Generator, Brochure, literature number 5988-3935EN.
- E4438C ESG Vector Signal Generator, Configuration Guide, literature number 5988-4085EN.
- E4438C ESG Vector Signal Generator, Data Sheet, literature number 5988-4039EN

Harmonics, sub-harmonics, and non-harmonics outside the frequency range of the instrument are typical.

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

See the Agilent MXG Web page for the latest information

Get the latest news, product and support information, application literature, firmware upgrades and more.

www.agilent.com/find/MXG

Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products

LXI

www.lxistandard.org

and applications you select.

LXI is the LAN-based successor to GPIB. providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

cdma2000 is a registered certification mark of the Telecommunications Industry Association. Used under license.

"WiMAX", "Mobile WiMAX" or "WiMAX Forum" are trademarks of the WiMAX Forum.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilenttrained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to

www.agilent.com/find/removealldoubt

Americas

Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444

Asia Pacific

Australia	1 800 629 485	
China	800 810 0189	
Hong Kong	800 938 693	
India	1 800 112 929	
Japan	0120 (421) 345	
Korea	080 769 0800	
Malaysia	1 800 888 848	
Singapore	1 800 375 8100	
Taiwan	0800 047 866	
Thailand	1 800 226 008	

Europe & Middle East

Luiope & Miluui	5 Lasi	
Austria	43 (0) 1 360 277 1571	
Belgium	32 (0) 2 404 93 40	
Denmark	45 70 13 15 15	
Finland	358 (0) 10 855 2100	
France	0825 010 700*	
	*0.125 €/minute	
Germany	49 (0) 7031 464 6333	
Ireland	1890 924 204	
Israel	972-3-9288-504/544	
Italy	39 02 92 60 8484	
Netherlands	31 (0) 20 547 2111	
Spain	34 (91) 631 3300	
Sweden	0200-88 22 55	
Switzerland	0800 80 53 53	
United Kingdom	44 (0) 118 9276201	
Other European Countries:		
www.agilent.com/find/contactus		

Product specifications and descriptions in this document subject to change without notice.

Revised: October 1, 2009

© Agilent Technologies, Inc. 2006-2009 Printed in USA, October 20, 2009 5989-5261EN

Sales@Testequipmentconnection.com

USA Voice: (800) 615-8378 Voice Direct: (407) 804-1299 Skype: TestEquipmentConnection

Test Equipment Connection Corporation is your single source test & measurement solution. We offer over 400 test equipment manufacturers including Agilent, Tektronix, Anritsu, Rohde & Schwarz, Advantest, Megger, LeCroy, Chroma and Fluke, plus thousands of New, Used, Second Hand, Pre-Owned, Demo, Refurbished, and Reconditioned test equipment products.

For over 18 years, we have been providing high quality spectrum analyzers, mobile phone testers, oscilloscopes, network analyzers, service monitors, RF amplifiers, broadband amplifiers, signal generators, OTDR, fusion splicers, and digital multimeters at great savings to over 200,000 customers worldwide. Lease or rent from us, and we can help manage your idle assets using our consignment program. Trade in underutilized test equipment for cash or credit towards the test solutions you need today! TEC offers repair and calibration support for thousands of current and discontinued brands. TEC's GSA Contract #GS-07F-0358U provides lower cost test and measurement equipment to qualifying government contractors and agencies.

www.TestEquipmentConnection.com

Americas

USA & Canada:(800) 615-8378 Florida:(407) 804-1299 Mexico: 52-55-8421-4127 Chile: 2-897-4335 Brazil:301-32793

Fax: 800-819-8378 / 407-804-1277 Skype: TestEquipmentConnection

Test Equipment Connection Corporation 30 Skyline Drive

Lake Mary, FL 32746 USA

Europe

United Kingdom: 20-8144-7837 Ireland: 1-442-8376 Sweden: 46-46-288-61-42 Denmark: 369-92915 Finland: 358-9-2316-3837 Belgium: +32 (2)808 0820

Test Equipment Connection Europe S.P.R.L.

Levels 20, Bastion Tower 5 Place du Champ de Mars B-1050 Brussels

Asia/Pacific

China: 86-136-3217-2095 Hong Kong: 852-2690-1360 Singapore: 65-6320-8596 Australia: 61-2-8011-3687 Skype: TEConnectionAsia

TE Connection Asia, Ltd.

Unit E4, 7/F., Phase I, Kaiser

Estate,

No. 41 Man Yue Street Kowloon, Hong Kong.

Test Equipment Connection Pte. Ltd.

6 Battery Road #31-00 Standard Chartered Bank Building Singapore 049909

